Deepfacelab скачать программу на русском торрент для windows

DeepFaceLab is the leading software for creating deepfakes. More than 95% of deepfake videos are created with DeepFaceLab.

DeepFaceLab

Deepfake Software


DeepFaceLab is the leading software for creating deepfakes. More than 95% of deepfake videos are created with DeepFaceLab.


Deepfake defense not only requires the research of detection but also requires the efforts of generation methods. However, current deepfake methods suffer the effects of obscure workflow and poor performance. To solve this problem, we present DeepFaceLab, the current dominant deepfake framework for face-swapping. It provides the necessary tools as well as an easy-to-use way to conduct high-quality face-swapping. It also offers a flexible and loose coupling structure for people who need to strengthen their pipeline with other features without writing complicated boilerplate code.

We detail the principles that drive the implementation of DeepFaceLab and introduce its pipeline, through which every aspect of the pipeline can be modified painlessly by users to achieve their customization purpose. It is noteworthy that DeepFaceLab could achieve cinema-quality results with high fidelity. We demonstrate the advantage of our system by comparing our approach with other face-swapping methods.



Download DeepFaceLab


DFL Resources



This powerful tool was designed to help users produce deepfake videos. They are able to swap faces, de-age them, as well as control lips to simulate speech.

Windows version:

Windows 7, Windows 8, Windows 10, Windows 11

  • DeepFaceLab Extracted images

DeepFaceLab is a graphics design program for Windows that enables you to swap faces on any picture or video recording. It was developed by sf-editor1 and released to the public as an open-source deepfake system. This is a convenient software solution for users who have no comprehensive understanding of the deep learning methods.

Deepfake effects

Aside from changing the faces in a photo or video, this application also enables you to modify the head, de-age it and even manipulate lips. Please note, the latter feature requires advanced skills in video editing software such as Adobe Premier.

The overall process does not come down to a few clicks. To create efficient face simulations, you need to study the workflow and improve your skills. It is necessary to mention that there are all-inclusive tutorials that will guide through the basics of using this program. Alternatively, you may use simpler face swapping utilities like Deepfakes.

Summary

DeepFaceLab is an efficient platform for creating various deepfake content. It was designed to accommodate all levels of technical knowledge and offers extensive customization for users who are familiar enough with the process.

Features

  • free to download and use;
  • compatible with modern Windows versions;
  • gives you the ability to create deepfakes;
  • it is possible to find extensive tutorials online;
  • you can replace faces on videos and images;
  • provides various customization options.

Moho Moho

Windows 10, Windows 11 Free

This program lets users create detailed 2D animations. There is a wide variety of tools for editing common templates and importing images into the project.

ver 13.5.5

XULRunner XULRunner

Windows XP, Windows Vista, Windows 7, Windows 8, Windows 10, Windows 11 Free

Using this comprehensive utility, you are able to develop and deploy Mozilla-based applications. It requires advanced programming knowledge to use efficiently. 

ver 41.0.2

Node js Node js

Windows XP, Windows Vista, Windows 7, Windows 8, Windows 10, Windows 11 Free

With the help of this powerful utility, users are able to develop network apps using JavaScript. Moreover, it is possible to extend its functionality via plugins.

ver 18.13.0

Print Artist Print Artist

Windows XP, Windows Vista, Windows 7, Windows 8, Windows 8.1, Windows 10, Windows 11 Paid program

Using this graphics editor you can design calendars, posters, greeting cards, scrapbook pages, flyers, invitations, family trees and other printing projects.

ver 25

PowerDesigner PowerDesigner

Windows XP, Windows Vista, Windows 7, Windows 8, Windows 10 Free

The application was designed to help users design and schedule important business transformations. It is also possible to connect to a wide range of databases.

ver 16.7.5.0

TVPaint Animation TVPaint Animation

Windows XP, Windows Vista, Windows 7, Windows 8, Windows 10, Windows 11 Free

Thanks to this powerful utility, you are able to produce animated movies. Additionally, you have the option to work with multiple layers at the same time.

ver 11.7.0

Libero SoC Libero SoC

Windows 7, Windows 8, Windows 8.1, Windows 10, Windows 11 Free

With the help of this specialized utility users can design complex field-programmable gate array processors. There are tools for optimizing hardware performance.

ver 2022.3

CyberMotion 3D Designer CyberMotion 3D Designer

Windows XP, Windows Vista, Windows 7, Windows 8, Windows 8.1, Windows 10, Windows 11 Free

Using this graphics editor you can create detailed 3D models and animations. There are powerful rendering instruments for applying textures to objects.

ver 14.0.1.2

DeepFake – технология синтеза изображения, основанная на искусственном интеллекте и используемая для замены элементов изображения на желаемые образы. Если вы не слышали о дипфейках, посмотрите приведенный ниже видеоролик. В нём актёр Джим Мескимен читает стихотворение «Пожалейте бедного пародиста» в двадцати лицах знаменитостей.

Название технологии – объединение терминов «глубокое обучение» (англ. Deep Learning) и «подделка» (англ. Fake). В большинстве случаев в основе метода лежат генеративно-состязательные нейросети (GAN). Одна часть алгоритма учится на фотографиях объекта и создает изображение, буквально «состязаясь» со второй частью алгоритма, пока та не начнет путать копию с оригиналом.

В следующем видео показаны процессы, происходящие за кулисами обучения нейросети. Как пишет автор проекта Sham00K, на итоговое видео потрачено более 250 часов работы, использовались 1200 часов съемочных материалов и 300 тыс. изображений. Объем сгенерированных данных составил приблизительно 1 Тб.

Области применения технологии

Уже имеются целые YouTube- и Reddit-каналы c дипфейк-роликами. Технология DeepFake может применяться для самых разных целей.

Кинопроизводство. Производство фильмов сегодня – крайне затратный процесс с арендой камер, студий и оплатой работы актёров. Развитие технологии DeepFake позволит сократить затраты на съемочный процесс, монтаж и спецэффекты.

Локализация рекламы. Достаточно записать один рекламный ролик со знаменитостью, после чего записанное лицо можно переносить в видео с местными актерами, произносящими рекламные слоганы на родном языке. То есть можно добиться эффекта, как будто знаменитость говорит на языке страны дистрибуции продукта.

Виртуальная и дополненная реальности. Технология переноса мимики может применяться для создания цифровых двойников в играх, виртуальной и дополненной реальностях. Источниками лица могут также служить знаменитости или участники игры. Это повышает эмоциональное вовлечение.

Очевидно, что технология должна использоваться с особой осторожностью. Злоумышленниками могут преследоваться цели компрометирования личности или создания фейковых новостей. В начале октября 2019 г. члены Комитета по разведке Сената США призвали крупные технологические компании разработать план для борьбы с дипфейками. Ранее, в сентябре этого года, Google создала специальный датасет дипфейков.

Отметим, что данная публикация подготовлена исключительно в исследовательских целях.

Примечание

Мы обновили гайд в апреле 2021 года, чтобы приблизить описание к текущему состоянию библиотеки DeepFaceLab.

Для синтеза дипфейка мы будем использовать популярную библиотеку DeepFaceLab. Библиотека стремительно развивается, сейчас доступно несколько релизов:

  1. Windows (magnet-ссылка) – последний релиз, для загрузки требуется торрент-клиент.
  2. Windows (Mega.nz) – содержит старые и новые релизы. Есть сборки для Nvidia карт размером порядка 3 Гб, а также версия для OpenCl (2020).
  3. Google Colab (GitHub) – можно использовать удаленные вычислительные мощности.
  4. DeepFaceLab для Linux (GitHub).
  5. CentOS Linux (github) – может отставать от основной ветки релизов.

Ниже описан базовый процесс создания дипфейка на примере Windows.

Важно понимать, что на качество результата влияет множество свойств исходных видеофайлов (разрешение и длительность, разнообразность мимики персонажей, освещение и т. д.). За любыми подробностями и деталями настроек перенаправляем к оригинальному репозиторию.

Системные требования для DeepFaceLab

Минимальные системные требования для работы с инструментом:

  • ОС Windows 7 или выше (64 бит).
  • Процессор с поддержкой SSE-инструкций.
  • Оперативная память объемом не менее 2 Гб + файл подкачки.
  • OpenCL-совместимая видеокарта (NVIDIA, AMD, Intel HD Graphics).

Рекомендуемые системные требования:

  • Процессор с поддержкой AVX-инструкций.
  • Оперативная память объемом не менее 8 Гб.
  • Видеокарта NVIDIA с объемом видеопамяти не менее 6 Гб.

Алгоритм работы с DeepFaceLab

Предварительно договоримся о терминологии:

  1. src (сокр. от англ. source) – лицо, которое будет использоваться для замены,
  2. dst (сокр. от англ. destination) – лицо, которое будет заменяться.

Архив сборки нужно распаковать как можно ближе к корню системного диска. После распаковки в каталоге DeepFaceLab вы найдете множество bat-файлов.

Примерная структура каталога workspace

Примерная структура каталога workspace

Местом хранения модели служит внутренняя директория workspace. В ней будут содержаться видео, фотографии и файлы самой программы. Вы можете копировать переименовывать каталог для сохранения резервных копий.

Папка _internal используется алгоритмом.

Сразу после распаковки в workspace уже могут содержаться примеры видеороликов для теста. В соответствии с описанной терминологией вы можете заменить их видеофайлами с теми же названиями data_src.mp4 и data_dst.mp4. Максимально поддерживаемое разрешение – 1080p. Приведенные в документации примеры расширений файлов: mp4, avi, mkv.

data_dst – это папка, в которой будут храниться кадры, извлеченные из файла data_dst.mp4 – целевого видео, в котором мы меняем местами лица. Папка также будет содержать две подпапки, которые создаются после запуска «извлечения» лиц:

  • aligned – изображения лиц (со встроенными данными лицевых ориентиров)
  • align_debug – исходные кадры с наложенными на лица ориентирами, которые используются чтобы идентифицировать корректно или некорректно распознанные лица.

data_src – это папка, в которой будут храниться кадры, извлеченные из файла data_src.mp4, или другие кадры-картинки в формте jpg, на которых изображен хозяин нового лица. Как и в случае с data_dst, после извлечения лиц создаются две подпапки:

  • aligned – извлеченные изображения лиц
  • align_debug выполняет ту же функцию, что и для dst, однако для извлечения набора данных src папка не создается по умолчанию. При желании нужно выбрать yes (y) при запуске извлечения, чтобы её сгенерировать.

Как вы могли заметить, bat-файлы в корне распакованного каталога имеют в начале имени номер. Каждый номер соответствует определенному шагу выполнения алгоритма. Некоторые пункты опциональны. Пройдемся по этой последовательности.

1. Очистка рабочего каталога

На первом шаге запуском 1) clear workspace.bat и нажатием пробела очищаем лишнее содержимое папки workspace. Одновременно создаются необходимые директории.

2. Извлечение кадров из видеофайла источника (data_src.mp4)

На втором шаге извлекаем изображения (кадры) из src-файла (2) extract images from video data_src.bat). Для этого запускаем bat-файл, получаем приглашение для указания кадровой частоты:

        Enter FPS ( ?:help skip:fullfps ) :
    

Пропускаем пункт, нажав Enter, чтобы извлечь все кадры.

        Output image format? ( jpg png ?:help skip:png ) : ?
    

В формат png файлы извлекаются без потерь качества, но на порядок медленнее и с большим объемом, чем в jpg. После задания настроек кадры извлекаются в каталог data_src.

3. Извлечение кадров сцены для переноса лица (опционально)

При необходимости обрезаем видео с помощью 3.1) cut video (drop video on me).bat. Этот пункт удобен, если вы никогда не пользовались программным обеспечением для редактирования видео. Перетаскиваем файл data_dst поверх bat-файла. Указываем временные метки, номер аудиодорожки (если их несколько) и при необходимости битрейт выходного файла. Появляется дополнительный файл с суффиксом _cut.

Запускаем 3.2) extract images from video data_dst FULL FPS.bat для извлечения кадров dst-сцены. Файлы автоматически переносятся в каталог data_dst. Как и для src, есть опция с выбором jpg/png.

4. Составление выборки лиц источника

На этом этапе начинается глубокое обучение. Нам необходимо детектировать лица на src-кадрах. Получаемая выборка будет храниться по адресу workspacedata_srcaligned. Этому пункту соответствует множество bat-файлов, начинающихся с 4) data_src faceset extract. При стандартном подходе используется SF3D-алгоритм детекции лица. Есть следующие опции:

  1. Выбор зоны, которую мы хотим извлечь: площадь увеличивается от full face (FF) к whole face (WF) и head (HEAD).
  2. Вариант использования GPU: ALL (задействовать все видеокарты), Best (использовать лучшую). Выбирайте второй вариант, если у вас есть и внешняя, и встроенная видеокарты, и вам нужно параллельно работать в офисных приложениях.
  3. Записывать или нет результат работы детекторов. Каждый кадр с выделенными контурами лиц записывается по адресу workspacedata_srcaligned_debug.

Пример вывода программы при запуске на видеокарте NVIDIA GeForce 940MX:

        Performing 1st pass...
Running on GeForce 940MX. Recommended to close all programs using this device.
Using TensorFlow backend.
100%|################################################################################| 655/655 [03:32<00:00,  3.08it/s]
Performing 2nd pass...
Running on GeForce 940MX. Recommended to close all programs using this device.
Using TensorFlow backend.
100%|##########################################################################################################################################################| 655/655 [13:28<00:00,  1.23s/it]
Performing 3rd pass...
Running on CPU0.
Running on CPU1.
Running on CPU2.
Running on CPU3.
Running on CPU4.
Running on CPU5.
Running on CPU6.
Running on CPU7.
100%|#########################################################################################################################################################| 655/655 [00:05<00:00, 112.98it/s]
-------------------------
Images found:        655
Faces detected:      654
-------------------------
Done.
    

Аналогичный bat-файл со словом MANUAL применяется для ручного переизвлечения уже извлеченных лиц в случае ошибок на этапе 4.2) data_src util add landmarks debug images.bat.

4.1. Удаляем большие группы некорректных кадров

Запускаем 4.1) data_src view aligned result.bat. Он запускает обозреватель, в котором можно просмотреть содержимое папки data_src/aligned относительно ложных срабатываний и неправильно определенных лиц, чтобы их можно было удалить.

DeepFake-туториал: создаем собственный дипфейк в DeepFaceLab

На этом этапе необходимо удалить крупные группы некорректных кадров, чтобы далее не тратить на них вычислительный ресурс. К некорректным кадрам относятся все, что не содержат четко различимого лица. Лицо также не должно быть закрыто предметом, волосами и пр. Не тратьте время на мелкие группы. Мы удалим их на следующем шаге.

4.2. Сортировка и удаление прочих некорректных кадров

Файл 4.2) data_src sort.bat служит для для сортировки и выявления групп некорректных кадров. Не закрывая обозреватель, последовательно запускайте bat-файл с нужной опцией и удаляйте группы некорректных кадров (обычно находятся в конце). Доступные опции:

  • blur, motion blur сортирует кадры по резкости, удаляем кадры с нечеткими лицами.
  • face yaw сортирует лица по взгляду слева направо.
  • face pitch direction сортирует лица так, чтобы в начале списка лицо смотрело вниз, а в конце – вверх.
  • histogram similarity группирует кадры по содержанию, позволяет удалять ненужные лица группами.
  • histogram dissimilarity оставляет ближе к концу списка те изображения, у которых больше всего схожих (обычно это лица анфас). По усмотрению можно удалить часть конца списка, чтобы не проводить обучение на идентичных лицах.
  • brightness, hue, amount of black pixels соответствуют яркости, насыщенности и количеству черных пикселей. Помогает убрать переходные кадры, где лицо трудно различимо.
  • best faces – помогает выделить наиболее хорошо различимые лица.

4.2) data_src util add landmarks debug images.bat сгенерирует после извлечения лиц папку align_debug.

4.2) data_src util faceset enhance.bat использует специальный алгоритм машинного обучения для масштабирования/«улучшения» качества представления лиц в наборе данных. Полезно, если кадры немного размыты и вы хотите сделать их более резкими.

Файлы 4.2) data_src util faceset metadata restore.bat и 4.2) data_src util faceset metadata save.bat позволяют сохранять и восстанавливать данные об извлеченых наборах лиц/данных, чтобы вы могли редактировать изображения лиц после их извлечения без потери данных о выравнивании. Например, так можно увеличивать резкость, редактировать очки, пятна на коже, делать цветокоррекцию.

4.2) data_src util faceset pack.bat и 4.2) data_src util faceset unpack.bat служат для упаковки (распаковки) лиц из папки aligned в один файл. Используется для подготовки настраиваемого набора данных для предварительного обучения, упрощает совместное использование в виде одного файла и значительно сокращает время загрузки набора данных (секунды вместо минут).

4.2.other) data_src util recover original filename возвращает имена изображений лиц к исходному порядку/именам файлов. Запускать не обязательно – обучение и слияние будут выполняться независимо от имен файлов источника.

5. Составление выборки лиц принимающей сцены (dst)

Следующие операции с некоторыми отличиями идентичны выборке лиц источника. Главным отличием является то, что для принимающей сцены важно определить dst-лица во всех кадрах, содержащих лицо, даже мутных. Иначе в этих кадрах не будет произведено замены на источник.

5) data_dst faceset extract.bat выполняет автоматическое извлечение с использованием алгоритма S3FD.

5) data_dst faceset extract + manual fix.bat позволяет вручную указать контуры лица на кадрах, где лицо не было определено. При этом в конце извлечения файлов открыто окно ручного исправления контуров. Элементы управления описаны вверху окна (вызываются клавишей H).

5) data_dst faceset extract MANUAL RE-EXTRACT DELETED ALIGNED_DEBUG.bat используется для ручного переизвлечения из кадров, удаленных из папки align_debug. Подробнее об этом рассказано далее.

DeepFake-туториал: создаем собственный дипфейк в DeepFaceLab

Все экстракторы позволяют выбрать между GPU и CPU, а также указать область, выделяемую для извлечения. Аналогично src это FF, WF или HEAD.

5.1. Извлечение лиц вручную (manual extractor)

После запуска 5) data_dst faceset extract MANUAL.bat откроется окно, в котором вы можете вручную найти лица, которые хотите извлечь или переизвлечь:

  • Выделите лицо с помощью мыши.
  • С помощью колесика мыши можно менять размер области поиска.
  • Убедитесь, что все или хотя бы большинство ориентиров находится на важных точках (глазах, рту, носу, бровях) и правильно следуют контурам лица. В некоторых случаях, в зависимости от угла освещения или имеющихся препятствий, может оказаться невозможным точно выровнять все ориентиры, поэтому просто попытайтесь сделать так, чтобы покрывались все видимые части.
  • Чтобы изменить режим точности, используйте клавишу A. Теперь ориентиры не будут так сильно «прилипать» к обнаруженным лицам, но вы сможете более точно позиционировать ориентиры.
  • Для перемещения вперед и назад используйте клавиши < и >. Для редактирования нажмите Enter или кликните левой клавишей мыши.
  • Чтобы пропустить оставшиеся грани и выйти из экстрактора, используйте клавишу q.

Чтобы посмотреть результаты в папке aligned, можно запустить 5.1) data_dst view aligned results.bat.

Чтобы бегло просмотреть содержимое папки align_debug, найти и удалить любые кадры, на которых лицо целевого человека имеет неправильно выровненные ориентиры или ориентиры вообще не были размещены, используйте 5.1) data_dst view aligned_debug results.bat.

5.2. Очистка данных сцены

После того, как мы определили границы data_dst, нужно их очистить аналогично тому, как мы это делали с исходным набором лиц. Однако очистка целевого набора данных отличается от исходного, потому что мы хотим, чтобы все грани были выровнены для всех кадров, в которых они присутствуют, включая проблемные.

Начните с сортировки с помощью 5.2) data_dst sort.bat и используйте сортировку по similarity. Лица будут отсортированы по сходству, цвету, структуре – так будет проще сгруппировать похожие и удалить изображения, содержащие ложные срабатывания, лица других людей и неправильно определенные границы. Послу удаления неверных границ восстановите имена и порядок файлов с помощью утилиты 5.2) data_dst util recover original filename.

Перейдите в папку data_dst/align и используйте следующую, откройте Powershell и с помощью следующей команды удалите суффиксы _0 из имен файлов с размеченными лицами:

        get-childitem *.jpg | foreach {rename-item $_ $_.name.replace("_0","")}
    

Дождитесь завершение процесса – по окончании снова отобразится адрес папки.

Если в сцене есть кроссфейд-переходы или лицо отражается в зеркалах, найдите файлы с суффиксом _1, переместите их в отдельную папку и снова запустите скрипт, но замените в команде _0 на _1. Скопируйте результат обратно в основную папку и убедитесь, что сохранили все файлы.

Создайте копию папки aligned_debug. После этого выделите все файлы в папке aligned, скопируйте их в свежесозданную копию папки align_debug, дождитесь завершения и, пока все только что замененные файлы еще выделены, удалите их. Просмотрите оставшиеся кадры и удалите все, на которых нет лиц, которые вы хотите извлечь вручную. Скопируйте остальные кадры обратно в исходную папку align_debug, замените, дождитесь завершения и, пока все замененные файлы все еще выделены, удалите их.

После таких манипуляций папка align_debug содержит только кадры, из которых были правильно извлечены лица, а также кадры, из которых экстрактор не смог правильно извлечь лица или не извлек. Теперь вы можете запустить 5) data_dst faceset MANUAL RE-EXTRACT DELETED ALIGNED_DEBUG.bat для их извлечения вручную Прежде чем вы это сделаете, можно запустить 5.1) data_dst view align_debug results.bat, чтобы быстро просмотреть оставшиеся хорошие и посмотреть, правильно ли выглядят ориентиры.

Если вы хотите еще больше улучшить качество разметки, используйте альтернативную модель разметки XSeg, работа с которой подробно описана в п. 5.3 официального руководства.

6. Обучение

Обучение нейросети – самая времязатратная часть, которая может длиться часы и сутки. Для тренировки необходимо выбрать одну из моделей. Выбор и качество результата определяются объемом памяти видеокарты. В текущей версии программы доступно две модели:

  • SAEHD (6GB+). Настраиваемая модель для высокопроизводительных графических процессоров.
  • Quick96 (2-4GB). Простой режим, предназначенный для графических процессоров с 2-4 ГБ видеопамяти.

При первом запуске программа попросит указать параметры, применяемые при последующих запусках (при нажатии Enter используются значения по умолчанию). Большинство параметров понятно интуитивно, прочие – описаны в руководстве.

Обратите внимание, что некоторые параметры не могут быть изменены после начала обучения, например:

  • разрешение модели (model resolution)
  • архитектура модели (model architecture)
  • размерность модели (models dimensions)
  • тип лица (face type)

Рассмотрим также некоторые другие параметры модели.

Autobackup every N hour: автоматическое резервное копирование вашей модели каждые N часов. По умолчанию отключено.

Target iteration: модель прекратит обучение после достижения заданного количества итераций, например, если вы хотите обучать модель только 100 тыс. итераций, вы должны ввести значение 100000. Если оставить значение равным 0, модель будет работать до тех пор, пока вы не остановите ее вручную.

Flip faces randomly: полезный вариант в случаях, когда в исходном наборе данных нет всех необходимых углов поворота лица.

Batch_size: параметр влияет на количество лиц, сравниваемых друг с другом на каждой итерации. Наименьшее значение — 2, но вы можете увеличить значение, если с этим справится ваш графический процессор. Чем выше разрешение, размеры и больше особенностей у моделей, тем больше потребуется VRAM, поэтому может потребоваться меньший размер пакета. Рекомендуется не использовать значение ниже 4. Для начальной стадии можно установить более низкое значение, чтобы ускорить начальное обучение, а затем повысить его. Оптимальные значения – от 6 до 12.

AE architecture: можно выбрать тип архитектуры модели. Два основных типа: DF и LIAE. Обе модели обеспечивают высокое качество, но DF лучше срабатывает для лиц анфас, а LIAE качественнее справляется с трансформациями. Дополнительные буквы в названии соответствуют повышению сходства (-U) и увеличению разрешения модели (-D).

Прочие настройки подробно описаны в оригинальном руководстве.

На что обратить внимание

Отключите любые программы, использующие видеопамять. Если в процессе тренировки в консоли было выведено много текста, содержащего слова Memory Error, Allocation или OOM, то на вашем GPU модель не запустилась, и ее нужно урезать. Необходимо скорректировать опции моделей.

При корректных условиях параллельно с консолью откроется окно Training preview, в котором будет отображаться процесс обучения и кривая ошибки. Снижение кривой отражает прогресс тренировки. Кнопка p (английская раскладка) обновляет предпросмотр.

DeepFake-туториал: создаем собственный дипфейк в DeepFaceLab

Процесс обучения можно прерывать, нажимая Enter в окне Training preview, и запускать в любое время, модель будет продолжать обучаться с той же точки. Чем дольше длится тренировка, тем лучший результат мы получим.

7. Наложение лиц

Теперь у нас есть результат обучения. Необходимо совместить src-лица и кадры dst-сцены. Из списка bat-файлов выбираем ту модель, на которой происходила тренировка.

В новой версии DeepFaceLab доступно множество режимов наложения с различными масками и дополнительными настройками. В качестве параметров для первой пробы можно использовать параметры по умолчанию (по нажатию Enter) и варьировать их, если вас не устроит результат соединения сцены и нового лица.

8. Склейка кадров в видео

После того, как вы объедините/конвертируете все лица, внутри папки data_dst появится папка с именем merged, содержащая все кадры, а также директория merged_masked, которая содержит кадры масок. Последний шаг – преобразовать их обратно в видео и объединить с исходной звуковой дорожкой из файла data_dst.mp4.

Итоговый файл будет сохранен под именем result. Доступны форматы mp4 и avi. Готово! Ниже представлен пример, полученный для тестовых видео.

Если результат вас не удовлетворил, попробуйте разные опции наложения, либо продолжите тренировку для повышения четкости, используйте другую модель или другие видео с исходным лицом. О неописанных особенностях работы с библиотекой, прочих советах и хитростях читайте в оригинальном руководстве и комментариях к нему.

Планируете протестировать DeepFake? Делитесь результатами ;)

DeepFaceLab is currently the world’s leading software for creating deepfakes, with over 95% of deepfake videos created with DeepFaceLab. DeepFaceLab is an open-source deepfake system that enables users to swap the faces on images and on video. It offers an imperative and easy-to-use pipeline that even those without a comprehensive understanding of the deep learning framework or model implementation can use; and yet also provides a flexible and loose coupling structure for those who want to strengthen their own pipeline with other features without having to write complicated boilerplate code.

DeepFaceLab can achieve results with high fidelity that are indiscernible by mainstream forgery detection approaches. Apart from seamlessly swapping faces, it can also de-age faces, replace the entire head, and even manipulate speech (though this will require some skill in video editing).

Features

  • Flexible, easy-to-use pipeline
  • Ability to replace faces and heads on images and video
  • Ability to de-age faces
  • Comprehensive guides and tutorials
  • Community-made pretrained models and ready to work facesets

Project Samples

License

GNU General Public License version 3.0 (GPLv3)

How intelligent field teams win at retail. Icon

Real-time insights on retail execution and sales performance. Smarter merchandising, promotion, and sales execution tools for your field team. Everything you need to win at the shelf.

User Reviews

Additional Project Details

Programming Language

Python

2020-11-30

pretrained DF.wf.288res.384.92.72.22

LIAE.f.128.80.48.16 — 1.000.000 iter

================ Model Summary =================
== ==
== Model name: new_SAEHD ==
== ==
== Current iteration: 1000000 ==
== ==
==————— Model Options —————==
== ==
== resolution: 128 ==
== face_type: f ==
== models_opt_on_gpu: True ==
== archi: liae ==
== ae_dims: 128 ==
== e_dims: 80 ==
== d_dims: 48 ==
== d_mask_dims: 16 ==
== masked_training: True ==
== learn_mask: True ==
== eyes_prio: True ==
== lr_dropout: False ==
== random_warp: True ==
== gan_power: 0.0 ==
== true_face_power: 0.0 ==
== face_style_power: 0.0 ==
== bg_style_power: 0.0 ==
== ct_mode: none ==
== clipgrad: False ==
== pretrain: True ==
== autobackup_hour: 0 ==
== write_preview_history: False ==
== target_iter: 1000000 ==
== random_flip: True ==
== batch_size: 8 ==
== ==
==—————- Running On —————-==
== ==
== Device index: 0 ==
== Name: GeForce RTX 2080 Ti ==
== VRAM: 11.00GB ==
== ==

jpg

Скачав данный пакет программ (DeepFaceLab) около недели назад, я был несколько ошарашен, ибо перед моим взором предстала следующая картина:

jpg

Из чего можно сделать вывод, что лучше использовать карты уровня GeForce GTX 1060 (и более поздние аналоги) для nVidia или AMD Radeon 470 и выше. Мой конфиг: Ryzen 7 1800X @ 4.0 GHz, GeForce GTX 1080 Ti.

3. Тренировка ИИ. Сложный процесс, имеющий кучи, непонятных не только новичку, но и чуть более опытным пользователям, настроек (в продвинутых моделях), поэтому лучше начинать либо с H64 или с DF (в данном случае это название модели для тренировки), т.к. они проще. Хотя можно запускать и более сложные модели, такие как SAE и SAE HD, в режиме «по умолчанию», главное чтобы хватило VRAM, иногда надо снижать некоторые параметры. Тренировать ИИ рекомендуют ОТ одного дня. Но на картах уровня 1080ti и выше, на мой взгляд, это время можно сократить, но исходя из результата, который выводится на экран в процессе тренировки. Пример:

jpg

Выложу свой стандартный алгоритм создания DF, который поможет в самостоятельном освоении:

Самое первое видео, его исходники идут в комплекте DeepFaceLab, т.е. и предназначены для первых тренировок (файлы data_dst.mp4 и data_src.mp4 в папке «DeepFaceLabworkspace«, свои видеофайлы вы в дальнейшем должны называть также, чтобы программа их подхватывала и использовала).

Тут на миг пропадает лицо Греты (замена на неизвестную широкой общественности журналистку):

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Источник

Содержание

  1. Deepfacelab для windows 7
  2. Latest commit
  3. Git stats
  4. Files
  5. README.md
  6. About
  7. DeepFaceLab for Windows
  8. Softonic review
  9. Top-notch deepfake creator
  10. Deepfake various contents
  11. Fun and effective deepfakes
  12. DeepFaceLab for Windows
  13. Software for creating deep fakes
  14. Download and install
  15. Software features
  16. Deepfake uses
  17. Challenging app for beginners
  18. Deepfacelab для windows 7
  19. About

Deepfacelab для windows 7

DeepFaceLab is a tool that utilizes deep learning to recognize and swap faces in pictures and videos.

This branch is not ahead of the upstream master.

No new commits yet. Enjoy your day!

Latest commit

Git stats

Files

Failed to load latest commit information.

README.md

DeepFaceLab is a tool that utilizes deep learning to recognize and swap faces in pictures and videos.

Based on original FaceSwap repo. Facesets of FaceSwap or FakeApp are not compatible with this repo. You should to run extract again.

Features:

new architecture, easy to experiment with models

face data embedded to png files

new preview window

extractor in parallel

converter in parallel

added —debug option for all stages

added MTCNN extractor which produce less jittered aligned face than DLIBCNN, but can produce more false faces. Comparison dlib (at left) vs mtcnn on hard case: 5qLiiOV MTCNN produces less jitter.

added Manual extractor. You can fix missed faces manually or do full manual extract: 38454756 0fa7a86c 3a7e 11e8 9065 182b4a8a7a43

standalone zero dependencies ready to work prebuilt binary for all windows versions, see below

Model types:

H64 Robert Downey Jr.:

H64 Downey 0

H64 Downey 1

H128 Cage 0

H128 asian face on blurry target:

H128 Asian 0

H128 Asian 1

DF Cage 0

LIAEF128 Cage 0

LIAEF128 Cage 1

LIAEF128 Cage video:

0

MIAEF128 model diagramm:

MIAEF128 diagramm

MIAEF128 Ford success case:

MIAEF128 Ford 0

MIAEF128 Cage fail case:

MIAEF128 Cage fail

AVATAR Navalniy 0

0

0

Conclusion: better not to mix and use only same shape faces with same light

Sort tool:

hist groups images by similar content

hist-dissim places most similar to each other images to end.

hist-blur sort by blur in groups of similar content

face and face-dissim currently useless

Best practice for gather src faceset:

Best practice for dst faces:

Facesets:

Build info

dlib==19.10.0 from pip compiled without CUDA. Therefore you have to compile DLIB manually.

Prebuilt python folder with DeepFaceLab:

Windows 7,8,8.1,10 zero dependency (just install/update your GeForce Drivers) prebuilt Python 3.6.5 embeddable folder with DeepFaceLab can be downloaded from torrent https://rutracker.org/forum/viewtopic.php?p=75318742 (magnet link inside).

**Windows 10 memory problem:

Windows 10 consumes % of VRAM even if card unused for video output.

Pull requesting:

I understand some people want to help. But result of mass people contribution we can see in deepfakesfaceswap. High chance I will decline PR. Therefore before PR better ask me what you want to change or add to save your time.

About

DeepFaceLab is a tool that utilizes deep learning to recognize and swap faces in pictures and videos.

Источник

DeepFaceLab for Windows

Softonic review

Top-notch deepfake creator

DeepFaceLab is a graphic and design utility that enables you to efficiently swap faces on any image or video. Developed by sf-editor1, this open-source deepfake system is leading in the market with over 95% of created deepfake videos alone. The indispensable pipeline that it serves is easy-to-use even for users that have no comprehensive understanding of the deep learning framework. It provides a fairly flexible and loose coupling structure to strengthen users’ pipeline in simpler methods.

Deepfake various contents

Aside from replacing the faces in an image or video, DeepFaceLab enables you to also change the head, de-age the face, and even manipulate lips for speeches. Although, that particular feature requires skills in video editing software such as Adobe After Effects or Davinci Resolve. Unfortunately, if you expect that everything would be done here in just a single click, the reality is no. You have to spend time studying the workflow and enhancing your skills.

You do not need to worry much though as you will be accompanied by all-inclusive guides and tutorials that can effectively walk you through the basics of the program. A mini video tutorial can also be found on the GitHub page of the software. These guides and tutorials will demonstrate in detail how to do faceset creation, set fake on Google Colab, and manually compose deepfake in well-known video editors.

For more tips, you can follow the software’s various communication groups such as Discord, Telegram, Reddit, etc. There will be community-made pre-trained models and celebrity facesets that are ready for you to use anytime you want. You can achieve noteworthy results with high conformity to a standard that will be impossible to be detected by mainstream forgery detection approaches.

Fun and effective deepfakes

DeepFaceLab is truly an effective platform to perform various deepfake contents. Its provided pipeline is made as easy as possible to accommodate all levels of technical knowledge but still, offering a flexible amount of customization that can be modified easily by users who have enough familiarity with the program. Well, it doesn’t go as far as serving a «make everything ok» button as you still need to go through the process.

Источник

DeepFaceLab for Windows

User rating User Rating

39a1d e099e

Software for creating deep fakes

deepfacelab screenshot

A group of 11 editors are the creators behind DeepFaceLab. It’s a free and open-source software to create deepfake videos available for Windows 7, 8, 8.1 and 10. TensorFlow powers the software, which also requires Nvidia CUDA and DirectX 12.

You use DeepFaceLab to create deepfake videos. Deepfake creators use deep learning AI so that people can use deepfake for humour and satire. You’ll need to be skilled in using AfterEffects or Davinci Resolve to make deepfake videos.

Download and install

Check for and download the correct build of DeepFaceLab that’s compatible with your graphics processing unit (GPU). If you don’t have a GPU, select the CLSSE build. Download any of the available face sets in a folder to create your first deepfake video. Or make your own from videos and images you have on your PC. Double-click the executable file to install the software. It will create a workspace folder where all the action happens.

Software features

DeepFaceLab lets you replace faces or an entire head. You can also use it to make a face look younger or manipulate people’s lips. To properly use this program, you will need to know how to use AfterEffects and Davinci Resolve. Since creating deepfakes requires technical skills, there are no default settings for you to use. You’ll need to establish a workflow that works for you and use your established skills.

Deepfake uses

People can use deepfakes in many ways, some harmful. High-quality deepfakes are specifically created for movies and gaming purposes. People can use them to spread false information and news by making it look like a well-known person appears in a certain video. Ordinary users create humorous deepfakes for fun.

A recent trend is creating deepfakes as only audio. Although someone can impersonate a person’s voice and commit fraud, it has good uses too. Medical professionals can use it for voice replacement, while game developers can create a real-time speech for game characters.

As the technology improves, deepfakes are becoming more realistic. Soon, we’ll need specific platforms and software to detect them.

Challenging app for beginners

DeepFaceLab is free for Windows users. But this isn’t a simple process, and you’ll need specific skills to even be able to use the program. Beginners will face a steep learning curve when trying to develop realistic deepfake videos. This program is recommended only to those who are technologically skilled and those willing to learn.

Источник

Deepfacelab для windows 7

the leading software for creating deepfakes

More than 95% of deepfake videos are created with DeepFaceLab.

DeepFaceLab is used by such popular youtube channels as

What can I do using DeepFaceLab?

Manipulate politicians lips

(voice replacement is not included!) (also requires a skill in video editors such as Adobe After Effects or Davinci Resolve)

political speech2

political speech3

Deepfake native resolution progress

Unfortunately, there is no «make everything ok» button in DeepFaceLab. You should spend time studying the workflow and growing your skills. A skill in programs such as AfterEffects or Davinci Resolve is also desirable.

Guides and tutorials

DeepFaceLab guide Main guide Faceset creation guide How to create the right faceset Google Colab guide Guide how to train the fake on Google Colab Compositing To achieve the highest quality, compose deepfake manually in video editors such as Davinci Resolve or Adobe AfterEffects Discussion and suggestions Ready to work facesets Celebrity facesets made by community Pretrained models Pretrained models made by community DeepFaceLive Real-time face swap for PC streaming or video calls neuralchen/SimSwap Swapping face using ONE single photo 一张图免训练换脸 deepfakes/faceswap Something that was before DeepFaceLab and still remains in the past

How I can help the project?

Sponsor deepfake research and DeepFaceLab development.

You can collect faceset of any celebrity that can be used in DeepFaceLab and share it in the community

Register github account and push «Star» button.

You don’t need deepfake detector. You need to stop lying.

#deepfacelab #deepfakes #faceswap #face-swap #deep-learning #deeplearning #deep-neural-networks #deepface #deep-face-swap #fakeapp #fake-app #neural-networks #neural-nets #tensorflow #cuda #nvidia

About

DeepFaceLab is the leading software for creating deepfakes.

Источник

Adblock
detector

Если вы думали, что для создания качественного дипфейка вам нужен супер-компьютер или как минимум мощная видеокарта, то я вас обрадую. Сегодня я расскажу, как создать дипфейк, даже если у вас компьютер из начала 2000-ых.

Этот гайд даст вам исчерпывающую информацию, чтобы делать подобные дипфейки — посмотреть deepfake на YouTube. Это был мой первый дипфейк, сейчас получается намного лучше. Я постарался максимально подробно и просто рассказать все что знаю, поэтому материал получился довольно большой.

Раньше, чтобы добиться подобного качества, нужно было быть фотошопером от бога. Сначала разбить видео на кадры, на каждом кадре заменить лицо, слепить полученные кадры снова в видео, вот и дипфейк готов. Никто этим не занимался, так как это слишком сложно. Теперь у нас есть нейронные сети, которые позволяют все это сделать за нас.

Вроде все хорошо, но есть загвоздки:

  • Для работы с нейронными сетями нужна мощная видеокарта. А лучше сразу несколько.
  • Нужен большой набор фотографий, для обучения нейронки.

Помимо майнинга, видеокарты отлично справляются с созданием дипфейков. Но что делать, если у вас вместо нормальной видеокарты Intel HD Graphics. Не покупать же новую в эпоху майнинга 😄

Спонсор поста

Google Colab

К счастью, одну проблему легко решить. Google предоставляет бесплатный облачный сервис Google Colaboratory, который позволяет вам запускать код на Python из браузера, используя при этом мощный графический процессор.

У вас в распоряжении оказывается доступ к серверу с 70 Gb памяти, и что самое важное — с одной из мощных видеокарт от Nvidea: K80, T4, P4 или P100. И все это совершенно бесплатно, но с некоторыми ограничениями:

  • Colab запускается из браузера, и если вы закроете вкладку, то работа программы остановится. На создание одного дипфейка уходит от 2 дней. Все это время компьютер должен работать.

  • При этом время непрерывной сессии 12 часов. Когда вы подключаетесь к Colab, специальный алгоритм решает давать вам ресурсы GPU или нет. Если вам выделяют ресурсы, то они доступны вам 12 часов. Далее вы снова встаете в очередь. Но на практике это время еще меньше.

    Частично эту проблему решает создание нескольких аккаунтов. Но и это не всегда помогает, я создал пять аккаунтов и все равно мог не получить сервер.

  • Также временами будет всплывать капча, чтобы подтвердить, что вы на месте. Появление капчи не зависит от вашей активности в браузере, она просто будет появляться время от времени. Поэтому никакая имитация деятельности не поможет. Проверенно 😁

Не пугайтесь этой фразы «у вас в распоряжении оказывается сервер». На самом деле все намного проще, так как все управление происходит с помощью сайта. С этим справится даже школьник, поверьте.

Забегая вперед скажу, что существует Pro версия сервиса за 10$, которая лишина многих этих недостатков. Но и с бесплатной версией вполне можно работать.

DeepFaceLab (DFL)

Для создания дипфейка мы будем использовать проект DeepFaceLab [DFL 2.0], а точнее его слегка урезанную версию для Colab. У полноценной версии DFL есть визуальный редактор, который упрощает создание дипфейка.

Давайте для начала разберемся, как устроено создание дипфейка в общих чертах.

Общее описание работы

Для создания дипфейка нам нужна обученная модель нейронной сети. Именно нейронная сеть будет «превращать» одно лицо в другое. А чтобы она смогла это делать, ее нужно натренировать.

Тренировка довольно долгий процесс, обычно занимает несколько дней. Чем дольше тренируется модель, тем более правдоподобный получится результат.

Для тренировки понадобятся два набора лиц, проще говоря коллекция фотографий. В первом наборе (data_dst) будут целевые лица  — это лица, на которых мы будем заменять лицо. В другом наборе (data_src) лица источника — это лица, которые будут использоваться для замены.

Самый простой способ получить эти наборы лиц — это использовать видеозаписи. Видео делится на кадры, из кадров выделяются картинки с лицами. Не пугайтесь, вам нужно только представить видео или фотографии, а программа сама вырежет из них квадраты с лицами.

Видео с целевым лицом называется data_dst.mp4, видео с лицом источника — data_src.mp4. Для наборов не обязательно использовать видео, можно использовать наборы фотографии.

Далее на наборах лиц происходит тренировка модели нейронной сети. Проще говоря, нейронная сеть сама учится что надо изменить, чтобы из первого человка сделать второго.

Тренировка не быстрый итеративный процесс. На первых итерациях у нейронной сети будет получаться какая-то каша, но с каждой новой итерацией нейронная сеть будет приближаться к необходимому результату.

После окончания обучения происходит слияние. Сначала на исходных кадрах видео лица заменяются по обученной модели. После наложения происходит склейка кадров обратно в видео с названием result.mp4, звуковая дорожка для этого видео берется из файла data_dst.mp4. Так и получается дипфейк.

Структура проекта

Разберемся со структорой проекта DFL, чтобы понимать что где лежит и за что отвечает. Все файлы лежат в папке workspace. В этой папке находятся другие папки и ресурсы, которые необходимы для обучения модели.

  • data_src — это папка, в которой хранятся кадры, извлеченные из файла data_src.mp4.
    После извлечения лиц из кадров создается подпапка:

    • aligned — изображения лиц, со встроенными данными лицевых ориентиров.
  • data_dst — это папка, в которой хранятся кадры, извлеченные из файла data_dst.mp4.
    Как и в случае с data_src, после извлечения лиц создается подпапка

    • aligned
    • merger — кадры видео data_dst, в которых уже заменено лицо.
  • model — папка хранит модель нейронной сети. Создается после начала обучения.
  • result.mp4 — этот файл создается после Merge. Является непосредственно дипфейком.

Я уже упоминал, что нам нужны видео, из которых мы будем извлекать лица:

  • для data_dst необходимо подготовить целевое видео и назвать его data_dst.mp4. Это видео помещается в папку workspace.
  • для data_src вы должны либо подготовить исходное видео и назвать его data_src.mp4, либо подготовить изображения в формате jpg/png.

Оптимальная длина ролика 5-10 минут. Чем длиннее будут ваши видео, тем сложнее и дольше будет создание дипфейка.

Также в процессе обучения может закончиться память на гугл-диске, что приведет к проблемам.

Подготовка к созданию

Перед обучением, нам необходимо получить изображения, из которых DFL сформирует наборы лиц для обучения. Для примера, создадим дипфейк из фрагмента видео Marvel. В нем железный человек забирает у человека-паука костюм.

Создадим новый проект DFL. Для этого создаем на компьютере папку workspace. Все папки и файлы далее будем создавать в ней.

Получаем набор data_src

Непосредственно набор для нас сделает DFL. От нас требуется предоставить для него изображения, из которых DFL вырежет квадраты с лицами.

Вы можете либо самостоятельно добавить изображения в формате png/jpg в папку data_src, либо можете добавить видео data_src.mp4 в workspace, после чего с помощью DFL нарезать его на кадры, и уже потом вырезать квадраты с лицами для набора.

Советы для записи видео

  • Снимайте лицо с разных ракурсов. А также желательно при разном освещении.
  • Изображайте какие-нибудь эмоции: гнев, радость. Алгоритм будет искать похожие по эмоциям лица. В идеале спародировать фрагмент видео.
  • Открывайте рот, а лучше что-то говорите в камеру. Если вы снимите видео, где рот не открывается, алгоритм не откроет его за вас. Улыбнитесь, покажите зубы и так далее.
  • Моргайте, а лучше закройте на несколько секунд глаза. В противном случае ваш дипфейк не будет моргать.

Получаем набор data_dst

Здесь все проще, ведь у вас есть видео data_dst.mp4. Вы можете дополнительно добавить в папку data_dst изображения с заменяемым лицом из других источников, в таком случае модель будет обучаться лучше. Но обычно достаточно тех кадров, что есть в видео.

Загружаем workspace в Google Drive

Нам нужно загрузить нашу папку в Google Drive, чтобы Google Colab мог получить к ней доступ.

Папку workspace архивируем таким образом, чтобы в архиве содержалась непосредственно папка workspace. Если в архиве будет сразу два видео или другие папки, то вы сделали все неправильно.

Теперь загрузите этот архив на гугл диск.

Создание Deepfake

Переходим в Colab

Открываем проект Colab в браузере.

Установка DFL

Перед установкой DFL проверим, какую GPU мы получили. Найдите раздел “Check GPU”, нажмите на “скрыта одна ячейка”, и запустите !nvidia-smi.

Иногда везет и попадается лучшая из доступных GPU: Nvidea T4

Эта GPU обеспечивают скорость тренировки 0.6-0.7 секунд за итерацию обучения модели. Остальные дают 1.3-1.4 секунд за итерацию. В идеале нужно выполнить 300000+ итераций обучения модели, так что выгоду считайте сами.

Переходим к пункту “Install or update DeepFaceLab”. И жмем на кнопку “Скрыта одна ячейка”, после жмем на треугольник запуска.

Начинается процесс установки

В процессе установки могут возникать ошибки подобного вида:

Не обращайте на них внимания, они не повлияют на работу.

Загрузка проекта

Через минут 5, после установки, переходим к “Manage workspace”. Нажимаем на плашку “скрыто 5 ячеек”.

Colab работает как докер, как только вы закрываете проект или браузер, все данные стираются. Поэтому держите браузер открытым, во время работы. Но даже несмотря на это могут происходить сбои, а процесс обучения довольно длинный, поэтому предусмотрено создание бэкапов на гугл диск каждый час.

Переходим к загрузке проекта в Colab. Пункт “Import from Drive” позволяет загрузить и распаковать проект с вашего гугл диска. Этот пункт также позволяет загружать отдельные части проекта, например только лица или только папку data_src.

Нам нужно загрузить workspace.zip с гугл диска. После запуска вам необходимо перейти по ссылке из консоли и разрешить доступ к диску.

Переходим по ссылке
Получаем код доступа, который копируем в Colab

Если все прошло успешно, то вы должны увидеть папку вашего проекта. Для этого есть кнопка слева под логотипом Colab.

Об остальных пунктах в разделе:

  • Пункт ниже “Export to Drive” позволяет скачать проект на гугл диск. Тут тоже можно выбрать не только весь проект, но и отдельные папки. Например, скачать только натренированную нейросетью модель.
  • Пункты “Import from URL” и “Export to URL” позволяют загружать и скачивать проект удаленно.
  • Пункт “Delete and recreate” позволяет очистить проект или часть про

Выделяем лица

Разворачиваем пункт “Extract, sorting and faceset tools”.

“Extract frames” разобьет наше видео на кадры, из которых мы вырежем лица для обучения нашей модели. Выбираем нужное видео, нажимаем пуск. В итоге получаем кадры видео либо в папке data_src, либо в папке data_dst. Если вы используете картинки вместо видео, то пропустите этот пункт для data_src.

“Denoise frames” отвечает за понижение шумов на кадрах видео. Запускайте его по желанию.

Теперь из кадров необходимо вырезать лица. За это отвечает пункт “Detect faces”. Запускаем для каждого видео. И получаем папки aligned в папках data_dst и data_src.

/content
[wf] Face type ( f/wf/head ?:help ) : wf
[0] Max number of faces from image ( ?:help ) : 0
[512] Image size ( 256-2048 ?:help ) : 720
[90] Jpeg quality ( 1-100 ?:help ) : 90
Extracting faces...

Очищаем набор лиц

Далее очищаем набор лиц от ложных срабатываний и/или неправильно выровненных лиц.

Скачиваем папки aligned c помощью пункта “Export to Drive” в “Manage workspace”. Этот пункт загрузит папки в виде архива в гугл диск, скачайте их оттуда и распакуйте. После чего проверьте, какие лица попали в выборку, удалите плохие.

Плохие лица для data_src/aligned:

  • Закрытые предметами лица.
  • Перевернутые лица
  • Сильно обрезанные лица
  • Размытые лица

Плохие лица для data_dst/aligned:

  • Сильно обрезанные лица
  • Лица, которые вы не собираетесь заменять

Плохие лица для data_dst и data_src отличаются, к data_src предъявляется более строгие требования, тогда как перестаравшись в удалении data_dst вы получите кадры без наложения лица.

Вот пример data_src/aligned перед очисткой с цветовой кодировкой лиц в соответствии с тем, что вы должны с ними делать.

  • Зеленый — хорошее выравнивание лиц.
  • Красный — смещенные. Они немного повернуты. Их стоит удалить.
  • Синий — препятствие поверх лица. Можно оставить, если это всего лишь небольшое препятствие на нескольких гранях во всем наборе.
  • Желтый — размытые лица. Следует удалить, если только это не уникальное положение головы, которых больше в наборе нет. Небольшое количество может помочь обобщить лицо. Не стоит оставлять больше 5% от набора данных.
  • Фиолетовый — лица других людей. Очевидно, что их нужно удалить.
  • Розовый — обрезанные лица. Их можно оставить, если обрезано только немного подбородка или лба, при условии, что это всего несколько лиц во всем наборе данных, или если присутствует уникальное положение головы.
  • Оранжевый — любые изображения с сильными фотоинстаграм-фильтрами и прочим. Если они лишь немного отличаются от остальных, можно оставить, предполагая, что используется передача цвета во время обучения, чтобы усреднить их всех по сравнению с другими и DST.

После очистки заархивируйте папки и загрузите на гугл-диск. После чего загрузите обратно в проект очищенные лица.

“Faceset Enhancer”

Пункт “Faceset Enhancer” позволит улучшить детализацию ваших наборов лиц. Используйте по желанию.

Я использую этот пункт только для data_src

XSeg mask

Если в вашем видео заменяемое лицо перекрывается каким-то предметами, например лицо трогают руками, то вам необходимо для data_dst выполнить пункт “Apply or remove XSeg mask to the faces”. Если на видео лицо не перекрывается, то делать этого не надо.

Запускаем тренировку

Теперь мы можем приступить к тренировке нейронной сети. Переходим к пункту “Training”.

Нейронная сеть будет итеративно обучать модель. Как я уже говорил необходимо около 200-300к итераций, чтобы добиться хорошего качества дипфейка. Скорость выполнения одной итерации варьируется от параметров тренировки и вашей GPU и может принимать значения от 0.3 секунд до 1.2 секунд.

Пройдемся по параметрам тренировки. Некоторые параметры можно изменять в процессе обучения, чтобы улучшить обучаемость модели. А некоторые категорически нельзя изменять. Об этих нюансах я расскажу далее.

Параметр Silent_Start отвечает за повторный запуск с последними параметрами тренировки. Отключаем этот пункт, так как у нас не было тренировок. Также этот пункт надо отключать, если вы хотите изменить какой-либо параметр в процессе тренировки. Тогда после выбора модели и GPU надо нажать Enter в течение двух секунд.

/content
Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
Creating workspace archive ...
Archive created!
Time to end session: 12 hours
Running trainer.

[new] No saved models found. Enter a name of a new model : tony_stark

Model first run.
Silent start: choosed device Tesla T4

Нам сообщают, что бэкап создан, и у нас еще 12 часов серверного времени. И просят ввести название модели.


[0] Autobackup every N hour ( 0..24 ?:help ) : 0

Как часто делать бекапы, оставляем значение 0. Мы уже указали галкой, что бекапы делать каждый час.


[n] Choose image for the preview history ( y/n ) : n

Сохранять изображения предварительного просмотра во время тренировки каждые несколько минут. Если вы выберете «Да», вы получите еще один запрос.


[n] Write preview history ( y/n ?:help ) : n

Выберите изображение для истории предварительного просмотра: если вы выберете N, модель будет выбирать грани для предварительного просмотра случайным образом, при выборе Y должно открыться новое окно после, где вы сможете выбрать их вручную.

Так как мы работаем в Colab, то никакого окна не получим, лучше выбрать n.


[0] Target iteration : 0

Количество повторений, после которого обучение прекратится. Если поставить 0, то обучение будет бесконечным.

Чем больше итераций, тем лучше получится дипфейк. Оптимально 300к-500к итераций.

При дефолтных параметрах ниже на Colab Pro вы получаете скорость в 0.3-0.4 секунды за итерацию. Это позволяет за ночь выполнить более 100000 итераций. В бесплатном Colab вы получаете 0.6-0.7 секунды за итерацию, это позволяет за ночь выполнить чуть более 50000 итераций, но скорее всего будет меньше из-за капчи, которая прервет обучение.


[n] Flip SRC faces randomly ( y/n ?:help ) : n

Случайно переворачивает грани src по горизонтали. Помогает покрыть все углы, присутствующие в наборе данных dst, гранями src в результате их переворачивания, что иногда может быть полезно. Особенно если в нашем наборе немного разных условий освещения, но во многих случаях результаты будут казаться неестественными, поскольку лица никогда не бывают идеально симметричными.

Рекомендуется использовать только на ранних этапах обучения или не использовать вообще, если наш набор data_src достаточно разнообразен.


[y] Flip DST faces randomly ( y/n ?:help ) : y

Случайное переворачивание граней dst по горизонтали, может улучшить обобщение, если предыдущий параметр отключен.


[8] Batch_size ( ?:help ) : 8

Параметры размера пакета влияют на количество лиц, сравниваемых друг с другом на каждой итерации. Наименьшее значение — 2.

Чем выше разрешение, размеры и больше функций у ваших моделей, тем больше потребуется VRAM, поэтому может потребоваться меньший размер пакета. Не рекомендуется использовать значение ниже 4. Чем больше размер пакета, тем выше качество за счет более медленного обучения, более продолжительного времени итерации.

Для начальной стадии можно установить более низкое значение, чтобы ускорить начальное обучение, а затем повысить его. Оптимальные значения — от 6 до 12.


[128] Resolution ( 64-640 ?:help ) : 128

Разрешение ваших моделей. Это влияет на разрешение замененных лиц, чем выше разрешение модели — тем детальнее будет изученное лицо, но и обучение будет намного тяжелее и дольше.

Разрешение может быть увеличено с 64×64 до 640×640 с шагом:

  • 16 (для вариантов с обычной архитектурой и -U)
  • 32 (для вариантов с архитектурой -D и -UD)

Изменение этого параметра ведет к изменениям других параметров, вследствие чего скорость итерации может замедлиться более чем в 2 раза.

Этот параметр нельзя изменить во время обучения.

Если вы используете Colab Pro, то можете увеличить Resolution до 192.


[f] Face type ( h/mf/f/wf/head ?:help ) : wf

Эта опция позволяет вам установить область лица, которую вы хотите тренировать, есть 5 вариантов — половина лица, середина половины лица, анфас, все лицо и голова:

Half face (HF)

Тренируется только область ото рта до бровей, но в некоторых случаях может отрезать верхнюю или нижнюю часть лица: брови, подбородок, кусочек рта.

Mid-half face (MHF)

Направлена на решение проблемы HF, покрывая на 30% большую часть лица по сравнению с половиной лица, что должно предотвратить возникновение большинства нежелательных обрезаний, но они все же могут произойти.

Full face (FF)

Покрывает большую часть области лица, за исключением лба, иногда может отрезать немного подбородка, но это случается очень редко — только когда объект широко открывает рот). Наиболее рекомендуется, когда SRC и или DST имеют волосы, покрывающие лоб.

Whole face (WF)

Расширяет эту область еще больше, чтобы покрыть практически все лицо, включая лоб и все лицо сбоку, вплоть до ушей.

Head (HEAD)

Используется для замены всей головы, не подходит для людей с длинными волосами. Лучше всего работает, если исходный набор данных faceset поступает из одного источника, и как SRC, так и DST имеют короткие волосы или волосы, форма которых не меняется в зависимости от угла.

Лучший вариант это WF.


[liae-ud] AE architecture ( ?:help ) : liae-ud

AE architecture (df/liae/df-u/liae-u/df-d/liae-d/df-ud/liae-ud ?:help ) : Этот вариант позволяет вам выбирать между двумя основными архитектурами обучения:DF и LIAE, а также их варианты -U, -D и -UD.

DF

Эта архитектура модели обеспечивает более прямую замену лиц, не трансформирует лица, но требует, чтобы лицо исходного и целевого назначения имело схожую форму, в то время как черты лица (формы рта, глаз, носа) могут отличаться больше, чем при LIAE. Лучше работает с фронтальными снимками и требует, чтобы исходный набор данных имел все необходимые углы, может давать худшие результаты на боковых профилях, чем LIAE.

LIAE

Эта архитектура модели не столь строгая, когда речь идет о сходстве формы лица между источником и целевым местом назначения, но черты лица (формы глаз, носа, рта) должны быть схожими для хороших результатов. Эта модель предлагает худшее сходство с источником, чем DF, но может лучше обрабатывать боковые профили и более снисходительна, когда дело доходит до набора данных исходного лица, в котором отсутствуют некоторые углы, выражения или условия освещения, часто дает более точные смены лиц с лучшим соответствием цветового освещения.

DF-U/LIAE-U

Этот вариант направлен на улучшение сходства с исходными лицами.

DF-D/LIAE-D

Этот вариант направлен на повышение производительности за счет примерно удвоения возможного разрешения без дополнительных затрат на вычисления (использование VRAM) и аналогичной производительности. Однако для этого требуется более длительное обучение, модель должна быть предварительно обучена для получения оптимальных результатов, а разрешение должно быть изменено на значение 32, в отличие от 16 в других вариантах.

DF-UD/LIAE-UD

Объединяет оба варианта для максимального сходства и повышения разрешения. Также требуется более длительное обучение и предварительная подготовка модели.


Следующие 4 параметра управляют размерами нейронных сетей моделей, которые влияют на способность моделей к обучению, их изменение может иметь большое влияние на производительность и качество.

Если вы повысили пункт Resolution, то необходимо увеличить и эти пункты, иначе улучшения качества не добиться.

Для Resolution: 192
AutoEncoder dimensions: 384
Encoder dimensions: 96
Decoder dimensions: 96
Decoder mask dimensions: 33

Мои параметры для Colab Pro замедляют обучение в 2 раза. Таким образом мы получаем скорость обучения, как в бесплатной версии Colab, но с повышенным качеством.

[256] AutoEncoder dimensions ( 32-1024 ?:help ) : 256

Настройка AutoEncoder влияет на общую способность модели распознавать лица.

[64] Encoder dimensions ( 16-256 ?:help ) : 64

Настройка Encoder влияет на способность модели узнавать общую структуру лиц.

[64] Decoder dimensions ( 16-256 ?:help ) : 64

Настройка Decoder, влияет на способность модели распознавать мелкие детали.

[22] Decoder mask dimensions ( 16-256 ?:help ) : 22

Decoder mask влияет на качество изученных масок.

Изменения каждого параметра могут по-разному влиять на производительность, и невозможно измерить влияние каждого из них на производительность и качество без тщательного тестирования.

Для каждого параметра установлено значение по умолчанию, которое должно обеспечивать оптимальные результаты и хороший компромисс между скоростью и качеством обучения.

Кроме того, при изменении одного параметра следует изменить и другие, чтобы отношения между ними оставались одинаковыми.


[y] Masked training ( y/n ?:help ) : y

Отдает приоритет обучению того, что замаскировано (маска по умолчанию или примененная маска xseg), доступно только для типов лиц WF и HEAD, при отключении тренирует всю область образца (включая фон) с тем же приоритетом, что и само лицо.


[n] Eyes and mouth priority ( y/n ?:help ) : n

Попытки исправить проблемы с глазами и ртом, включая зубы, обучив их более высокому приоритету, также могут улучшить их уровень резкости.


[n] Uniform yaw distribution of samples ( y/n ?:help ) : n

Помогает при обучении граней профиля, заставляет модель тренироваться равномерно на всех гранях и устанавливает приоритеты для граней профиля. Может замедлять обучение фронтальных граней, включено по умолчанию во время предварительного обучения. Может использоваться, пока включен “random warp”, для улучшения обобщения сторон профиля лица или когда “random warp” отключен, чтобы улучшить качество и резкость деталей этих лиц.

Полезно, когда в исходном наборе данных не так много снимков профиля. Может помочь снизить размер потерь.


[y] Place models and optimizer on GPU ( y/n ?:help ) : y

Включение оптимизатора графического процессора нагружает ваш графический процессор, что значительно повышает производительность (время итерации), но приводит к более высокому использованию видеопамяти, отключение этой функции переносит часть работы оптимизатора на центральный процессор, что снижает нагрузку на графический процессор и использование видеопамяти, что позволяет достичь большего размера пакета или запустить более требовательные модели за счет увеличения времени итерации.


[y] Use AdaBelief optimizer? ( y/n ?:help ) : y

AdaBelief (AB) — это оптимизация модели, которая увеличивает точность модели и качество обученных лиц.

Когда эта опция включена, она заменяет оптимизатор RMSProp по умолчанию. Однако эти улучшения происходят за счет более высокого использования VRAM, что требует обучения существующих или новых моделей с меньшим размером пакета.

Эту опцию следует использовать только на новых моделях и всегда с самого начала, никогда не отключайте ее во время обучения, после включения она должна оставаться таковой.


[n] Use learning rate dropout ( n/y/cpu ?:help ) : n

“learning rate dropout” используется для ускорения обучения лиц и уменьшения дрожания субпикселей — уменьшает дрожание лица и в некоторой степени также может уменьшить мерцание освещения.

В основном используется в 3 случаях:

  • перед отключением “random warp”, когда значения потерь больше не улучшаются, это может помочь модели немного обобщить лица
  • после того, как “random warp” был отключен и вы достаточно хорошо обучили модель, включение ее ближе к концу обучения приведет к более детальным, стабильным лицам, которые менее склонны к мерцанию
  • после того, как вы немного потренировались с LARD, и лица выглядят так же хорошо, как вы можете включить GAN, и “learning rate dropout” следует оставить включенным во время его работы.

Если в вашей модели включен Adabelief, “learning rate dropout” не является обязательным, но все же рекомендуется, особенно при обучении GAN.


[y] Enable random warp of samples ( y/n ?:help ) : n

Случайная деформация используется для обобщения модели, чтобы она правильно учила черты лица и выражения на начальном этапе обучения. Но пока она включена, у модели могут возникнуть проблемы с изучением мелких деталей. Из-за этого рекомендуется держать эту функцию включенной до тех пор, пока ваши лица все еще улучшаются, и когда все выглядит правильно, вы должны отключить его, чтобы начать изучение деталей. Улучшение проверяйте глядя на уменьшение значений потерь и улучшение лиц в окне предварительного просмотра.


[0.0] GAN power ( 0.0 .. 1.0 ?:help ) : 0.0

GAN расшифровывается как Generative Adversarial Network, а в случае DFL 2.0 он реализован как дополнительный способ обучения, чтобы получить более подробные и четкие лица. Этот параметр настраивается по шкале от 0,0 до 10,0, и его следует включать только после того, как модель более или менее полностью обучена (после того, как вы отключили случайную деформацию образцов и включили “learning rate dropout”).

Рекомендуется использовать низкие значения, например 0,01. Обязательно сделайте резервную копию своей модели перед началом обучения. После включения будут представлены еще две настройки для настройки внутренних параметров GAN:


[0.0] Face style power ( 0.0..100.0 ?:help ) : 0.0
[0.0] Background style power ( 0.0..100.0 ?:help ) : 0.0

Эти параметры управляют переносом стиля лица. Они используются для переноса стиля лиц data_dst на окончательное изученное лицо, что может улучшить качество и внешний вид после объединения. Но с высокими значениями может сделать лицо больше похожим на data_dst, чем на data_src.

Эта функция передаст некоторую информацию о цветовом освещении из DST в результирующее лицо, что может помочь с согласованием цветов и уменьшить мерцание, если передачи цвета недостаточно.

Рекомендуется не использовать значения выше 10. Начните с небольших значений, например 0,001–0,01, и увеличивайте их или начните с более высоких значений, например 1-2, и постепенно уменьшайте их.

Эта функция влияет на производительность, и ее использование увеличит время итерации и может потребовать от вас уменьшить размер пакета, отключить оптимизатор графических процессоров или запустить “learning rate dropout” на ЦП в результате более высокого использования VRAM.


[none] Color transfer for src faceset ( none/rct/lct/mkl/idt/sot ?:help ) : none

Эта функция используется для сопоставления цветов вашего data_src с data_dst, чтобы конечный результат имел цвет кожи, аналогичный data_dst, а конечный результат после обучения не менял цвета при перемещении лица, что может произойти, если были разные углы лица. На выбор есть несколько вариантов:

  • none: в некоторых случаях вы можете получить лучшие результаты без передачи цвета во время тренировки.
  • rct (reinhard color transfer): на основе: https://www.cs.tau.ac.il/~turkel/imagepapers/ColorTransfer.pdf
  • lct (linear color transfer): Соответствует распределению цвета целевого изображения и исходного изображения с помощью линейного преобразования.
  • mkl (Monge-Kantorovitch linear): на основе: http://www.mee.tcd.ie/~sigmedia/pmwiki/u…tie07b.pdf
  • idt (Iterative Distribution Transfer): на основе: http://citeseerx.ist.psu.edu/viewdoc/dow…1&type=pdf
  • sot (sliced optimal transfer): based on: https://dcoeurjo.github.io/OTColorTransfer/

Мы не будем использовать эту функцию на данном этапе, так как она замедляет обучение. Сопоставление цветов можно будет использовать уже на обученной модели, во время Merge.


[n] Enable gradient clipping ( y/n ?:help ) : y

Эта функция реализована для предотвращения так называемого разрушения модели, которое может произойти при использовании различных функций DFL 2.0. Он имеет небольшое влияние на производительность, поэтому, если вы действительно не хотите его использовать, вы должны включить автоматическое резервное копирование, поскольку свернутая модель не может восстанавливаться и должна быть очищена, а обучение нужно начинать заново.

Значение по умолчанию — n (отключено), но поскольку влияние на производительность настолько низкое, это может сэкономить вам много времени, предотвращая разрушение модели, если вы включите эту функцию.

Разрушение модели, скорее всего, произойдет при использовании “Face style power”, поэтому, если вы их используете, настоятельно рекомендуется включить “gradient clipping” или резервное копирование.


[n] Enable pretraining mode ( y/n ?:help ) : n

Включает процесс предварительного обучения, который использует набор данных из случайных лиц людей для первоначального обучения вашей модели. После обучения ее примерно до 200-400 тысяч итераций такую модель можно затем использовать при запуске обучения с фактическими данными data_src и data_dst, которые вы хотите обучить.

Это экономит время, потому что вы не нужно начинать обучение с нуля каждый раз. Модель будет «знать», как должны выглядеть лица, и, таким образом, ускорит начальный этап обучения.


Когда обучение начнется, вы увидите такую строку

[22:59:08][#003094][0662ms][0.4956][0.7795]
  • #003094 — это текущий номер итерации
  • 0662ms — количество миллисекунд на одну итерацию

Во время обучения вы можете посмотреть насколько модель получается успешной. Для этого надо зайти в папку

Слияние

Первым делом необходимо наложить лицо data_src/aligned на кадры видео data_dst.

В процессе слияния вы можете заходить в папку data_dst/merged, чтобы посмотреть, как накладывается маска. Если результат вас не устраивает, то остановите Merge и запустите его с новыми параметрами.

В секции файлы существует ограничение, на показ количества файлов — отображается только первые 1000. Если вам нужно посмотреть 2000 кадр, то можно зайти в консоль сервера. Кнопка в левом нижнем углу.

Используем вот эту команду, чтобы скопировать нужный кадр в папку workspace:

cp workspace/data_dst/merged/00107.png workspace/

Переходим в раздел “Merge frames” в пункт “Merge”. Тут тоже нужно будет выбрать параметры:

/content
Running merger.

Choose one of saved models, or enter a name to create a new model.
[r] : rename
[d] : delete

[0] : tony stark - latest : 0

Предлагают выбрать модель, просто нажимаем Enter.


Loading tony stark_SAEHD model...

Choose one or several GPU idxs (separated by comma).

[CPU] : CPU
[0] : Tesla P100-PCIE-16GB

[0] Which GPU indexes to choose? : 0

Выбираем на каком железе будем делать слияние, конечно на GPU.


Choose mode:
(0) original
(1) overlay
(2) hist-match
(3) seamless
(4) seamless-hist-match
(5) raw-rgb
(6) raw-predict

[1] : 3

Выбираем способ слияния:

  • original: отображает исходную рамку без замененного лица
  • overlay: простое наложение выученного лица поверх рамки
  • hist-match: накладывает выученное лицо на основе гистограммы.
  • seamless: использует функцию opencv poisson seamless clone, чтобы смешать новое заученное лицо с исходным.
  • seamless hist match: сочетает в себе hist-match и seamless
  • raw-rgb: накладывает необработанное выученное лицо без какой-либо маскировки

Мне всегда подходит seamless или seamless-hist-match, остальные часто дают много артефактов.


Choose mask mode:
(1) dst
(2) learned-prd
(3) learned-dst
(4) learned-prd*learned-dst
(5) learned-prd+learned-dst
(6) XSeg-prd
(7) XSeg-dst
(8) XSeg-prd*XSeg-dst
(9) learned-prd*learned-dst*XSeg-prd*XSeg-dst
[1] : 4

Выбираем режим маски.

  • dst: использует маски, полученные из формы ориентиров, созданных во время data_dst.
  • learned-prd: использует маски, полученные во время обучения. Сохраняет форму граней SRC.
  • learned-dst: использует маски, полученные во время обучения. Сохраняйте форму граней DST.
  • learned-prd*dst: совмещает обе маски, используя меньший размер обеих.
  • learned-prd+dst: сочетает в себе обе маски, используя больший размер обеих.
  • XSeg-prd: использует модель XSeg для маскировки с использованием данных из исходных лиц.
  • XSeg-dst: использует модель XSeg для маскировки с использованием данных из конечных лиц.
  • XSeg-prd*dst: совмещает обе маски, используя меньший размер обеих.
  • learned-prddstXSeg-dst*prd: объединяет все 4 режима маски, используя меньший размер всех.

Для обученных моделей на XSeg лучше всего показывает себя learned-prd*dst. Если вы не использовали xseg, то вам также может хорошо подойти learned-prd.


[0] Choose erode mask modifier ( -400..400 ) : 0

Эта функция управляет размером маски. Можно либо увеличить, либо уменьшить маску.


[0] Choose blur mask modifier ( 0..400 ) : 100

Этот параметр отвечает за размытие края маски для более плавного перехода. Обычно можно четко видеть, где накладывается маска, при использовании этого параметра переход становится менее заметным, а может и пропасть вовсе.

Обычно я устанавливаю значение от 50 до 100.


[0] Choose motion blur power ( 0..100 ) : 0

После ввода начальных параметров слияние загружает все кадры и данные, выровненные по data_dst, при этом вычисляет векторы движения, которые используются для создания эффекта размытия движения. Этот параметр позволяет вам добавить эффект размытия движения в местах, где лицо движется, но высокие значения могут размыть лицо даже при небольшом движении.

Опция работает, только если один набор лиц присутствует в папке data_dst/aligned. Если во время очистки у вас было несколько лиц с префиксом _1, даже если все лица одного человека, эффект не будет работать.


[0] Choose output face scale modifier ( -50..50 ) : 0

Color transfer to predicted face ( rct/lct/mkl/mkl-m/idt/idt-m/sot-m/mix-m ) : idt

Этот пункт позволяет выровнять цвета на обученном лице. Я рассказывал уже об этих режимах выше в параметрах для тренировки, тогда мы не стали их применять для ускорения обучения, а сейчас самое время.

Чаще всего идеальным вариантом становится idt или idt-m. Если вы используете hist-match или seamless hist match, то не применяйте этот параметр.


Choose sharpen mode:
(0) None
(1) box
(2) gaussian

[0] ( ?:help ) : 0

[0] Choose super resolution power ( 0..100 ?:help ) : 0
[0] Choose image degrade by denoise power ( 0..500 ) : 0
[0] Choose image degrade by bicubic rescale power ( 0..100 ) : 0
[0] Degrade color power of final image ( 0..100 ) : 0
[8] Number of workers? ( 1-4 ?:help ) : 8
  • degrade by denoise: Понижение шумов с помощью легкого размытия.
  • degrade by bicubic rescale: размывает изображение бикубическим методом

После установки последнего параметра начинается слияние.

Сохранение видео

У нас есть кадры с наложенным лицом, но нет видео. Пункт “Get result video” в разделе “Merge frames” создаст видео result.mp4 и загрузит его в гугл-диск.

Заключение

Вот и все. Это было самое полное руководство по созданию дипфеков, которое я смог из себя выдавить 😄

Программы, использующие технологию Deepfake для замены лица на видео

Хотели побывать на карнавале в Рио? Стать персонажем любимого фильма? Или получить приглашение на танец от знаменитости? Реалистичная замена лица в видео доступна любому пользователю. Потребуется только специальное онлайн- или офлайн-приложение.

Как же называется метод, который меняет внешность людей в роликах? Технология Deepfake основана на нейросети, которую обучают воспринимать мимику и черты людей для качественной подмены. Также алгоритм можно тренировать для имитации тембра и интонации голоса человека.

Примеры использования дипфейков можно увидеть не только в смешных роликах пользователей. Технологию применяют в рекламе, например, с помощью ИИ клона Брюса Уиллиса «Мегафон» добавил в свой рекламный клип. Также смену лиц и синтез голоса актеров можно увидеть в фильмах: Владислав Галкин в «Диверсанте», Джеймс Дин в «В поисках Джека», Пол Уокер в «Форсаж 7» и других.

В этой статье мы поделимся 7 способами для создания дипфейк-роликов самостоятельно. Ознакомьтесь с подробным обзором программ для Андроид, Айфон и Windows, а также онлайн-сервисов.

Для создания deepfake-ролика существует множество приложений на ПК или смартфон. Чтобы вам было проще найти подходящий софт, мы собрали лучшие решения для новичков и профи.

Faceapp

Faceapp

Платформа: Android, iOS

Цена: от 299 р. в месяц

Позволит снять клип в реальном времени или загрузить видеофайл популярного формата и применить к нему фильтры из встроенного каталога. Бесплатно можно сделать человека моложе или старше, добавить ему улыбку или наоборот придать грустное выражение лица, наложить реалистичную бороду. В платном тарифе также можно отретушировать кожу и нанести виртуальный макияж.

Faceapp подходит для начинающих, так как отличается простотой в использовании. Нужно только загрузить ролик и выбрать фильтр. Остальная обработка будет выполнена автоматически без участия пользователя.

✔️ Плюсы:

  • реалистичный результат без сбоев;
  • интерфейс на русском языке;
  • выгрузка готового ролика напрямую в социальные сети;
  • экспорт в высоком качестве.

Минусы:

  • перед выводом нельзя посмотреть ролик с эффектом — только стоп-кадр;
  • обработка небольшой записи занимает несколько минут;
  • в базовом тарифе на результат накладывается водяной знак.

Reface (ex Doublicat)

Reface (ex Doublicat)

Платформа: Android, iOS

Цена: от $2.49 в неделю

Одно из самых популярных приложений, позволяющее вставить лицо в видео. Оно подходит новичкам, так как ИИ выполняет автозамену самостоятельно без участия пользователя. Разработчик использовал при создании программы уникальную нейросеть, которая обучена распознавать мимику и черты лица на тысячи разных видеороликов. Благодаря этому создание дипфейка занимает всего несколько минут.

В ПО просто загружаешь фотографию и подставляешь ее на GIF из встроенного каталога. Интересующий вас фильм, сериал или другую анимацию можно искать вручную в списке или указать ключевые слова в поисковике.

Обратите внимание, что в настоящее время Reface недоступен для скачивания пользователям из России. Можно загрузить нелицензионную версию со сторонних ресурсов, однако мы не рекомендуем данный вариант. Таким образом можно подвергнуть устройство опасности и загрузить вирусы. Также у такого пакета нет обновлений и периодически возникают ошибки.

✔️ Плюсы:

  • добавление GIF-анимаций в избранное;
  • продуманный интерфейс;
  • достоверная подмена;
  • можно заменять несколько лиц одновременно.

Минусы:

  • можно создавать только короткие клипы (до минуты);
  • не дает использовать свои видеозаписи из локальной памяти;
  • в настоящий момент нельзя скачать официальную версию на Android или iPhone.

Deepfacelab

Deepfacelab

Платформа: Windows, Linux

Цена: бесплатно

Продвинутая программа для изменения лица на видео с открытым исходным кодом (в него можно вносить изменения, дополнять плагинами). Библиотеку с файлами ПО можно скачать бесплатно, однако это не стандартный дистрибутив, который просто запускается пользователем. Установку потребуется выполнять вручную или с помощью дополнительных сторонних утилит.

Подмена лица с помощью Deepfacelab также непростая задача. Понадобится самостоятельно обучать нейросеть различать мимику человека. Во встроенной галерее представлены видеозаписи, которые можно использовать во время настройки софта. Также вы сможете загрузить с жесткого диска файлы MP4, MKV или AVI с разрешением до 1080р.

Для обучения сети понадобится снять лицо, которое необходимо вставить вместо другого. Оно должно быть записано крупным планом без ниспадающих локонов, челки, очков и других предметов. Ролик должен содержать несколько ракурсов и моменты с закрытыми и открытыми глазами.

Тренировка на отснятых видеороликах займет около суток. Продолжительность зависит от установленных настроек: количества повторений и точности совпадения объектов. Качественные deepfake-клипы у вас получатся спустя много времени — от недели до месяца.

✔️ Плюсы:

  • реалистичная картинка с высокой детализацией;
  • инструменты для нарезки видеодорожек;
  • подробная инструкция от разработчика;
  • большое сообщество пользователей софта.

Минусы:

  • необходим мощный компьютер с 8 ГБ ОЗУ и 6 ГБ видеопамяти;
  • итоговая видеозапись нуждается в цветокоррекции;
  • даже после обучения обработка будет занимать несколько суток.

Wombo

Wombo

Платформа: Android

Цена: от 359 р. в месяц

Мобильное приложение для обработки селфи позволит создать видеоролики с музыкой. Wombo может «заставить» человека на снимке «петь» выбранную песню — губы и другие черты на статичном кадре будут двигаться в соответствии с ритмом и текстом композиции.

Wombo предлагает обширную коллекцию новой музыки. Она разбита на категории: трендовые треки, русские исполнители, популярные в TikTok аудио и т.д. Перед добавлением мелодии ее можно прослушать. Добавление «движений» будет выполнено в автоматическом режиме.

Также программа предлагает инструмент для соединения вашего лица со знаменитостью. Вы сможете смешать свои изображения с фото Роберта Паттинсона, Уилла Смита, Меган Фокс и других.

✔️ Плюсы:

  • можно сделать селфи прямо в софте;
  • просмотр предварительного результата перед экспортом;
  • отправка итога напрямую в соцсети;
  • сохранение в MP4 в галерею телефона;
  • частые обновления и исправления ошибок.

Минусы:

  • работает только с анфас портретами крупным планом;
  • в базовом тарифе недоступна часть музыкальных композиций;
  • без подписки снижена скорость преобразования;
  • в бесплатном пакете добавляется крупный водяной знак.

Avatarify

Avatarify

Платформа: Android, iOS

Цена: от 409 р. в неделю

Программа deepfake на мобильные устройства предоставляет инструменты для анимирования изображений. Avatarify «заставляет» людей (или животных) на картинки исполнять популярную песню. Мимика и положение головы будут меняться в соответствии с ритмом и лирикой аудиотрека.

Для преобразования портрета потребуется только загрузить файл и выбрать музыку из каталога. Обработка выполняется автоматически без участия пользователя. Исправить видеозапись невозможно, но вы сможете попробовать эффект повторно на другом снимке.

Чтобы было проще найти музыкальную композицию, коллекция разбита на категории: для детей, дуэты, мемы и т.д. Также пользователь может добавлять любые треки в список избранного.

✔️ Плюсы:

  • есть «поющие» шаблоны для двух людей;
  • перед применением пресет можно посмотреть на демонстрационном фото;
  • экспорт в MP4 в высоком разрешении;
  • продуманное русскоязычное меню.

Минусы:

  • для удаления вотермарка потребуется премиум;
  • результат выглядит нереалистичным — софт подойдет только для видеошутки;
  • часть пресетов недоступна в базовом тарифе;
  • только 34 русских аудиотрека;
  • нет поиска по библиотеке музыкальных композиций.

Faceswap

Faceswap

Платформа: Windows, Linux, MacOS

Цена: бесплатно

Программное обеспечение, которое распространяется бесплатно с открытым исходным кодом. В нем необходимо обучать нейросеть распознавать черты лица человека и мимику. Первая тренировка может занять несколько дней, а последующие пару часов.

При первых преобразованиях не получится использовать чужой видеофайл для вставки. Потребуется записать его самостоятельно, так как он должен включать четкую картинку с лицом в разных ракурсах (анфас, профиль и другие). Также никакие предметы не должны перекрывать черты, поэтому очки или головные уборы лучше снять.

Faceswap смогут использовать только опытные пользователи. Обучение нейронной сети необходимо выполнять в ручном режиме. Требуется настраивать параметры: количество повторов, точность совпадения двух лиц и т.д.

✔️ Плюсы:

  • качественный и достоверный итог;
  • обработка видеофайлов любой продолжительности;
  • функции для нарезки и обрезки видеоряда.

Минусы:

  • у готовой видеозаписи необходимо выполнить цветокоррекцию;
  • большая часть обучающих статей представлена на английском;
  • для установки на Windows потребуется загрузить дополнительное ПО GitHub;
  • перед созданием первого качественного клипа пройдет много времени — до месяца.

Deepfakes Maker

Deepfakes Maker

Платформа: веб

Цена: от $9 в месяц

Сайт для создания дипфейков онлайн в браузерах Google Chrome, Mozilla Firefox, Safari и т.д. Портал позволяет тренировать нейронные сети на ваших видеоклипах и добиваться наилучшего результата. Данные об обучении будут доступны только на вашем аккаунте. Также вы сможете их использовать повторно, чтобы не пришлось каждый раз учить модель ИИ.

Качество видеоряда и достоверность подмены зависит только от продолжительности видеодорожки и степени обученности нейросети. Также значение «потерь» при изучении ваших файлов должна составлять менее 0.02 единиц.

Ресурс использует облачное хранилище при создании дипфейков. Пользователь должен оплачивать его даже в бесплатном пакете. Итоговая стоимость будет зависеть только от длительности преобразования (в среднем от 5 часов).

✔️ Плюсы:

  • обучающие статьи и видеоуроки на сайте;
  • можно загрузить видео или фотографию;
  • расширенный режим для профи;
  • хранение итога на сервере в течение 6 месяцев.

Минусы:

  • дополнительно оплачивается использование облака — от 3 долларов в час;
  • обязательна регистрация на сервисе с указанием адреса электронной почты;
  • веб-страница представлена только на английском и китайском;
  • поверх видеодорожки добавляется вотермарк, который нельзя убрать;
  • в базовом пакете можно работать только с файлом размером менее 50 МБ и продолжительностью до 2.5 минут.

Обработка готового видео

После смены лица ролик следует обработать дополнительно. Во время редактирования можно удалить неудачные моменты с нереалистичной заменой, дополнить клип музыкальной композицией или субтитрами, отрегулировать освещение и цвета картинки и многое другое.

В этом вам поможет программа ВидеоМОНТАЖ. В редакторе можно вырезать любые признаки приложения, в котором создавался deepfake. Например, удалить рекламу, кадрировать водяной знак, перекрыть логотип своей картинкой.

Обработка готового видео

В редакторе можно работать с любым количеством видео

Также в софте можно соединить несколько файлов, добавить титры с темой ролика, записать озвучку через микрофон, применить эффекты из каталога. Видео можно конвертировать во все популярные форматы: MP4, AVI, MOV и другие. У клипа вы сможете установить разрешение, качество и частоту кадров, а также быстро адаптировать для загрузки в сеть.

Скачать программу для видеомонтажа можно бесплатно на Windows 11 и ниже. Она отличается продуманным интерфейсом на русском, а также пошаговым алгоритмом работы.

Скачать бесплатноAlt

AltWindows 11, 10, 8, 7 и XP

Теперь вы знаете, что такое deepfake и как технологию может использовать обычный пользователь. Выбор программы зависит только от желаемых опций и вашего устройства:

  • Для автоматического изменения воспользуйтесь мобильными приложениями. В ReFace можно вырезать лицо и накладывать его на любые GIF-анимации. FaceApp позволит отрегулировать выражение, добавить макияж и т.д.
  • Создать ролики с поющими людьми можно в Wombo и Avatarify. Они содержат каталог песен и дают сделать забавные клипы.
  • Вручную обучать нейросеть и получить качественный видеоролик можно в программах Deepfacelab и Faceswap, а также онлайн-сервисе Deepfakes Maker.

Выберите подходящий вариант, как сделать дипфейк, и выполните обработку прямо сейчас.

Вам также может понравиться

Like this post? Please share to your friends:
  • Deep swim windows 96 скачать песню
  • Deep rock galactic не запускается windows 10
  • Deep nostalgia скачать бесплатно для windows
  • Deep instinct agent windows 10 как удалить
  • Deep art effects для windows скачать торрент