Как установить numba python на windows

Numba is compatible with Python 3.6 or later, and Numpy versions 1.15 or later.

Compatibility¶

Numba is compatible with Python 3.6 or later, and Numpy versions 1.15 or later.

Our supported platforms are:

  • Linux x86 (32-bit and 64-bit)
  • Linux ppcle64 (POWER8)
  • Windows 7 and later (32-bit and 64-bit)
  • OS X 10.9 and later (64-bit)
  • NVIDIA GPUs of compute capability 2.0 and later
  • AMD ROC dGPUs (linux only and not for AMD Carrizo or Kaveri APU)
  • ARMv7 (32-bit little-endian, such as Raspberry Pi 2 and 3)
  • ARMv8 (64-bit little-endian, such as the NVIDIA Jetson)

Automatic parallelization with @jit is only available on 64-bit platforms.

Installing using conda on x86/x86_64/POWER Platforms¶

The easiest way to install Numba and get updates is by using conda,
a cross-platform package manager and software distribution maintained
by Anaconda, Inc. You can either use Anaconda to get the full stack in one download,
or Miniconda which will install
the minimum packages required for a conda environment.

Once you have conda installed, just type:

or:

Note that Numba, like Anaconda, only supports PPC in 64-bit little-endian mode.

To enable CUDA GPU support for Numba, install the latest graphics drivers from
NVIDIA for your platform.
(Note that the open source Nouveau drivers shipped by default with many Linux
distributions do not support CUDA.) Then install the cudatoolkit package:

$ conda install cudatoolkit

You do not need to install the CUDA SDK from NVIDIA.

Installing using pip on x86/x86_64 Platforms¶

Binary wheels for Windows, Mac, and Linux are also available from PyPI. You can install Numba using pip:

This will download all of the needed dependencies as well. You do not need to
have LLVM installed to use Numba (in fact, Numba will ignore all LLVM
versions installed on the system) as the required components are bundled into
the llvmlite wheel.

To use CUDA with Numba installed by pip, you need to install the CUDA SDK from NVIDIA. Please refer to
Setting CUDA Installation Path for details. Numba can also detect CUDA libraries
installed system-wide on Linux.

Enabling AMD ROCm GPU Support¶

The ROCm Platform allows GPU computing with AMD
GPUs on Linux. To enable ROCm support in Numba, conda is required, so begin
with an Anaconda or Miniconda installation with Numba 0.40 or later installed.
Then:

  1. Follow the ROCm installation instructions.

  2. Install roctools conda package from the numba channel:

    $ conda install -c numba roctools
    

See the roc-examples repository for
sample notebooks.

Installing on Linux ARMv7 Platforms¶

Berryconda is a
conda-based Python distribution for the Raspberry Pi. We are now uploading
packages to the numba channel on Anaconda Cloud for 32-bit little-endian,
ARMv7-based boards, which currently includes the Raspberry Pi 2 and 3,
but not the Pi 1 or Zero. These can be installed using conda from the
numba channel:

$ conda install -c numba numba

Berryconda and Numba may work on other Linux-based ARMv7 systems, but this has
not been tested.

Installing on Linux ARMv8 (AArch64) Platforms¶

We build and test conda packages on the NVIDIA Jetson TX2,
but they are likely to work for other AArch64 platforms. (Note that while the
Raspberry Pi CPU is 64-bit, Raspbian runs it in 32-bit mode, so look at
Installing on Linux ARMv7 Platforms instead.)

Conda-forge support for AArch64 is still quite experimental and packages are limited,
but it does work enough for Numba to build and pass tests. To set up the environment:

  • Install conda4aarch64.
    This will create a minimal conda environment.

  • Add the c4aarch64 and conda-forge channels to your conda
    configuration:

    $ conda config --add channels c4aarch64
    $ conda config --add channels conda-forge
    
  • Then you can install Numba from the numba channel:

    $ conda install -c numba numba
    

On CUDA-enabled systems, like the Jetson, the CUDA toolkit should be
automatically detected in the environment.

Installing from source¶

Installing Numba from source is fairly straightforward (similar to other
Python packages), but installing llvmlite can be quite challenging due to the need
for a special LLVM build. If you are building from source for the purposes of
Numba development, see Build environment for details on how to create a Numba
development environment with conda.

If you are building Numba from source for other reasons, first follow the
llvmlite installation guide.
Once that is completed, you can download the latest Numba source code from
Github:

$ git clone git://github.com/numba/numba.git

Source archives of the latest release can also be found on
PyPI. In addition to llvmlite, you will also need:

  • A C compiler compatible with your Python installation. If you are using
    Anaconda, you can use the following conda packages:

    • Linux x86: gcc_linux-32 and gxx_linux-32
    • Linux x86_64: gcc_linux-64 and gxx_linux-64
    • Linux POWER: gcc_linux-ppc64le and gxx_linux-ppc64le
    • Linux ARM: no conda packages, use the system compiler
    • Mac OSX: clang_osx-64 and clangxx_osx-64 or the system compiler at
      /usr/bin/clang (Mojave onwards)
    • Windows: a version of Visual Studio appropriate for the Python version in
      use
  • NumPy

Then you can build and install Numba from the top level of the source tree:

$ python setup.py install

Build time environment variables and configuration of optional components¶

Below are environment variables that are applicable to altering how Numba would
otherwise build by default along with information on configuration options.

NUMBA_DISABLE_OPENMP (default: not set)

To disable compilation of the OpenMP threading backend set this environment
variable to a non-empty string when building. If not set (default):

  • For Linux and Windows it is necessary to provide OpenMP C headers and
    runtime libraries compatible with the compiler tool chain mentioned above,
    and for these to be accessible to the compiler via standard flags.
  • For OSX the conda packages llvm-openmp and intel-openmp provide
    suitable C headers and libraries. If the compilation requirements are not
    met the OpenMP threading backend will not be compiled
NUMBA_DISABLE_TBB (default: not set)

To disable the compilation of the TBB threading backend set this environment
variable to a non-empty string when building. If not set (default) the TBB C
headers and libraries must be available at compile time. If building with
conda build this requirement can be met by installing the tbb-devel
package. If not building with conda build the requirement can be met via a
system installation of TBB or through the use of the TBBROOT environment
variable to provide the location of the TBB installation. For more
information about setting TBBROOT see the Intel documentation.

Dependency List¶

Numba has numerous required and optional dependencies which additionally may
vary with target operating system and hardware. The following lists them all
(as of July 2020).

  • Required build time:

    • setuptools
    • numpy
    • llvmlite
    • Compiler toolchain mentioned above
  • Required run time:

    • setuptools
    • numpy
    • llvmlite
  • Optional build time:

    See Build time environment variables and configuration of optional components for more details about additional
    options for the configuration and specification of these optional components.

    • llvm-openmp (OSX) — provides headers for compiling OpenMP support into
      Numba’s threading backend
    • intel-openmp (OSX) — provides OpenMP library support for Numba’s
      threading backend.
    • tbb-devel — provides TBB headers/libraries for compiling TBB support
      into Numba’s threading backend
  • Optional runtime are:

    • scipy — provides cython bindings used in Numba’s np.linalg.*
      support
    • tbb — provides the TBB runtime libraries used by Numba’s TBB threading
      backend
    • jinja2 — for “pretty” type annotation output (HTML) via the numba
      CLI
    • cffi — permits use of CFFI bindings in Numba compiled functions
    • intel-openmp — (OSX) provides OpenMP library support for Numba’s OpenMP
      threading backend
    • ipython — if in use, caching will use IPython’s cache
      directories/caching still works
    • pyyaml — permits the use of a .numba_config.yaml
      file for storing per project configuration options
    • colorama — makes error message highlighting work
    • icc_rt — (numba channel) allows Numba to use Intel SVML for extra
      performance
    • pygments — for “pretty” type annotation
    • gdb as an executable on the $PATH — if you would like to use the gdb
      support
    • Compiler toolchain mentioned above, if you would like to use pycc for
      Ahead-of-Time (AOT) compilation
    • r2pipe — required for assembly CFG inspection.
    • radare2 as an executable on the $PATH — required for assembly CFG
      inspection. See here for
      information on obtaining and installing.
    • graphviz — for some CFG inspection functionality.
    • pickle5 — provides Python 3.8 pickling features for faster pickling in
      Python 3.6 and 3.7.
  • To build the documentation:

    • sphinx
    • pygments
    • sphinx_rtd_theme
    • numpydoc
    • make as an executable on the $PATH

Checking your installation¶

You should be able to import Numba from the Python prompt:

$ python
Python 3.8.1 (default, Jan 8  2020, 16:15:59)
[Clang 4.0.1 (tags/RELEASE_401/final)] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import numba
>>> numba.__version__
'0.48.0'

You can also try executing the numba --sysinfo (or numba -s for short)
command to report information about your system capabilities. See Command line interface for
further information.

$ numba -s
System info:
--------------------------------------------------------------------------------
__Time Stamp__
2018-08-28 15:46:24.631054

__Hardware Information__
Machine                             : x86_64
CPU Name                            : haswell
CPU Features                        :
aes avx avx2 bmi bmi2 cmov cx16 f16c fma fsgsbase lzcnt mmx movbe pclmul popcnt
rdrnd sse sse2 sse3 sse4.1 sse4.2 ssse3 xsave xsaveopt

__OS Information__
Platform                            : Darwin-17.6.0-x86_64-i386-64bit
Release                             : 17.6.0
System Name                         : Darwin
Version                             : Darwin Kernel Version 17.6.0: Tue May  8 15:22:16 PDT 2018; root:xnu-4570.61.1~1/RELEASE_X86_64
OS specific info                    : 10.13.5   x86_64

__Python Information__
Python Compiler                     : GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/final)
Python Implementation               : CPython
Python Version                      : 2.7.15
Python Locale                       : en_US UTF-8

__LLVM information__
LLVM version                        : 6.0.0

__CUDA Information__
Found 1 CUDA devices
id 0         GeForce GT 750M                              [SUPPORTED]
                      compute capability: 3.0
                           pci device id: 0
                              pci bus id: 1

(output truncated due to length)

Installation

Compatibility

Numba is compatible with Python 3.8—3.10, and NumPy versions 1.18 or later.

Our supported platforms are:

  • Linux x86_64
  • Linux ppcle64 (POWER8, POWER9)
  • Windows 7 and later (32-bit and 64-bit)
  • OS X 10.9 and later (64-bit and unofficial support on M1/Arm64)
  • *BSD (unofficial support only)
  • NVIDIA GPUs of compute capability 5.3 and later
    • Compute capabilities 3.5 — 5.2 are supported, but deprecated.
  • ARMv8 (64-bit little-endian, such as the NVIDIA Jetson)

:ref:`numba-parallel` is only available on 64-bit platforms.

Installing using conda on x86/x86_64/POWER Platforms

The easiest way to install Numba and get updates is by using conda,
a cross-platform package manager and software distribution maintained
by Anaconda, Inc. You can either use Anaconda to get the full stack in one download,
or Miniconda which will install
the minimum packages required for a conda environment.

Once you have conda installed, just type:

$ conda install numba

or:

$ conda update numba

Note that Numba, like Anaconda, only supports PPC in 64-bit little-endian mode.

To enable CUDA GPU support for Numba, install the latest graphics drivers from
NVIDIA for your platform.
(Note that the open source Nouveau drivers shipped by default with many Linux
distributions do not support CUDA.) Then install the cudatoolkit package:

$ conda install cudatoolkit

You do not need to install the CUDA SDK from NVIDIA.

Installing using pip on x86/x86_64 Platforms

Binary wheels for Windows, Mac, and Linux are also available from PyPI. You can install Numba using pip:

$ pip install numba

This will download all of the needed dependencies as well. You do not need to
have LLVM installed to use Numba (in fact, Numba will ignore all LLVM
versions installed on the system) as the required components are bundled into
the llvmlite wheel.

To use CUDA with Numba installed by pip, you need to install the CUDA SDK from NVIDIA. Please refer to
:ref:`cudatoolkit-lookup` for details. Numba can also detect CUDA libraries
installed system-wide on Linux.

Installing on Linux ARMv8 (AArch64) Platforms

We build and test conda packages on the NVIDIA Jetson TX2,
but they are likely to work for other AArch64 platforms. (Note that while the
CPUs in the Raspberry Pi 3, 4, and Zero 2 W are 64-bit, Raspberry Pi OS may be
running in 32-bit mode depending on the OS image in use).

Conda-forge support for AArch64 is still quite experimental and packages are limited,
but it does work enough for Numba to build and pass tests. To set up the environment:

  • Install miniforge.
    This will create a minimal conda environment.

  • Then you can install Numba from the numba channel:

    $ conda install -c numba numba
    

On CUDA-enabled systems, like the Jetson, the CUDA toolkit should be
automatically detected in the environment.

Installing from source

Installing Numba from source is fairly straightforward (similar to other
Python packages), but installing llvmlite can be quite challenging due to the need
for a special LLVM build. If you are building from source for the purposes of
Numba development, see :ref:`buildenv` for details on how to create a Numba
development environment with conda.

If you are building Numba from source for other reasons, first follow the
llvmlite installation guide.
Once that is completed, you can download the latest Numba source code from
Github:

$ git clone git://github.com/numba/numba.git

Source archives of the latest release can also be found on
PyPI. In addition to llvmlite, you will also need:

  • A C compiler compatible with your Python installation. If you are using
    Anaconda, you can use the following conda packages:

    • Linux x86_64: gcc_linux-64 and gxx_linux-64
    • Linux POWER: gcc_linux-ppc64le and gxx_linux-ppc64le
    • Linux ARM: no conda packages, use the system compiler
    • Mac OSX: clang_osx-64 and clangxx_osx-64 or the system compiler at
      /usr/bin/clang (Mojave onwards)
    • Mac OSX (M1): clang_osx-arm64 and clangxx_osx-arm64
    • Windows: a version of Visual Studio appropriate for the Python version in
      use
  • NumPy

Then you can build and install Numba from the top level of the source tree:

$ python setup.py install

If you wish to run the test suite, see the instructions in the
:ref:`developer documentation <running-tests>`.

Build time environment variables and configuration of optional components

Below are environment variables that are applicable to altering how Numba would
otherwise build by default along with information on configuration options.

.. envvar:: NUMBA_DISABLE_OPENMP (default: not set)

  To disable compilation of the OpenMP threading backend set this environment
  variable to a non-empty string when building. If not set (default):

  * For Linux and Windows it is necessary to provide OpenMP C headers and
    runtime  libraries compatible with the compiler tool chain mentioned above,
    and for these to be accessible to the compiler via standard flags.
  * For OSX the conda package ``llvm-openmp`` provides suitable C headers and
    libraries. If the compilation requirements are not met the OpenMP threading
    backend will not be compiled.

.. envvar:: NUMBA_DISABLE_TBB (default: not set)

  To disable the compilation of the TBB threading backend set this environment
  variable to a non-empty string when building. If not set (default) the TBB C
  headers and libraries must be available at compile time. If building with
  ``conda build`` this requirement can be met by installing the ``tbb-devel``
  package. If not building with ``conda build`` the requirement can be met via a
  system installation of TBB or through the use of the ``TBBROOT`` environment
  variable to provide the location of the TBB installation. For more
  information about setting ``TBBROOT`` see the `Intel documentation <https://software.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/appendix/adding-parallelism-to-your-program/adding-the-parallel-framework-to-your-build-environment/defining-the-tbbroot-environment-variable.html>`_.

Dependency List

Numba has numerous required and optional dependencies which additionally may
vary with target operating system and hardware. The following lists them all
(as of July 2020).

  • Required build time:

    • setuptools
    • numpy
    • llvmlite
    • Compiler toolchain mentioned above
  • Required run time:

    • setuptools
    • numpy
    • llvmlite
  • Optional build time:

    See :ref:`numba-source-install-env_vars` for more details about additional
    options for the configuration and specification of these optional components.

    • llvm-openmp (OSX) — provides headers for compiling OpenMP support into
      Numba’s threading backend
    • tbb-devel — provides TBB headers/libraries for compiling TBB support
      into Numba’s threading backend (2021 <= version < 2021.6 required).
    • importlib_metadata (for Python versions < 3.9)
  • Optional runtime are:

    • scipy — provides cython bindings used in Numba’s np.linalg.*
      support
    • tbb — provides the TBB runtime libraries used by Numba’s TBB threading
      backend (version >= 2021 required).
    • jinja2 — for «pretty» type annotation output (HTML) via the numba
      CLI
    • cffi — permits use of CFFI bindings in Numba compiled functions
    • llvm-openmp — (OSX) provides OpenMP library support for Numba’s OpenMP
      threading backend.
    • intel-openmp — (OSX) provides an alternative OpenMP library for use with
      Numba’s OpenMP threading backend.
    • ipython — if in use, caching will use IPython’s cache
      directories/caching still works
    • pyyaml — permits the use of a .numba_config.yaml
      file for storing per project configuration options
    • colorama — makes error message highlighting work
    • intel-cmplr-lib-rt — allows Numba to use Intel SVML for extra
      performance
    • pygments — for «pretty» type annotation
    • gdb as an executable on the $PATH — if you would like to use the gdb
      support
    • Compiler toolchain mentioned above, if you would like to use pycc for
      Ahead-of-Time (AOT) compilation
    • r2pipe — required for assembly CFG inspection.
    • radare2 as an executable on the $PATH — required for assembly CFG
      inspection. See here for
      information on obtaining and installing.
    • graphviz — for some CFG inspection functionality.
    • typeguard — used by runtests.py for
      :ref:`runtime type-checking <type_anno_check>`.
    • cuda-python — The NVIDIA CUDA Python bindings. See :ref:`cuda-bindings`.
      Numba requires Version 11.6 or greater.
  • To build the documentation:

    • sphinx
    • pygments
    • sphinx_rtd_theme
    • numpydoc
    • make as an executable on the $PATH

Version support information

This is the canonical reference for information concerning which versions of
Numba’s dependencies were tested and known to work against a given version of
Numba. Other versions of the dependencies (especially NumPy) may work reasonably
well but were not tested. The use of x in a version number indicates all
patch levels supported. The use of ? as a version is due to missing
information.

Numba Release date Python NumPy llvmlite LLVM TBB
0.57.x TBC 3.8.x <= version < 3.12 1.19 <= version < 1.24 0.40.x 11.x 2021.x
0.56.4 2022-11-03 3.7.x <= version < 3.11 1.18 <= version < 1.24 0.39.x 11.x 2021.x
0.56.3 2022-10-13 3.7.x <= version < 3.11 1.18 <= version < 1.24 0.39.x 11.x 2021.x
0.56.2 2022-09-01 3.7.x <= version < 3.11 1.18 <= version < 1.24 0.39.x 11.x 2021.x
0.56.1 NO RELEASE          
0.56.0 2022-07-25 3.7.x <= version < 3.11 1.18 <= version < 1.23 0.39.x 11.x 2021.x
0.55.2 2022-05-25 3.7.x <= version < 3.11 1.18 <= version < 1.23 0.38.x 11.x 2021.x
0.55.{0,1} 2022-01-13 3.7.x <= version < 3.11 1.18 <= version < 1.22 0.38.x 11.x 2021.x
0.54.x 2021-08-19 3.6.x <= version < 3.10 1.17 <= version < 1.21 0.37.x 11.x 2021.x
0.53.x 2021-03-11 3.6.x <= version < 3.10 1.15 <= version < 1.21 0.36.x 11.x 2019.5 <= version < 2021.4
0.52.x 2020-11-30 3.6.x <= version < 3.9 1.15 <= version < 1.20 0.35.x 10.x
(9.x for aarch64)
2019.5 <= version < 2020.3
0.51.x 2020-08-12 3.6.x <= version < 3.9 1.15 <= version < 1.19 0.34.x 10.x
(9.x for aarch64)
2019.5 <= version < 2020.0
0.50.x 2020-06-10 3.6.x <= version < 3.9 1.15 <= version < 1.19 0.33.x 9.x 2019.5 <= version < 2020.0
0.49.x 2020-04-16 3.6.x <= version < 3.9 1.15 <= version < 1.18 0.31.x <= version < 0.33.x 9.x 2019.5 <= version < 2020.0
0.48.x 2020-01-27 3.6.x <= version < 3.9 1.15 <= version < 1.18 0.31.x 8.x
(7.x for ppc64le)
2018.0.5 <= version < ?
0.47.x 2020-01-02 3.5.x <= version < 3.9;
version == 2.7.x
1.15 <= version < 1.18 0.30.x 8.x
(7.x for ppc64le)
2018.0.5 <= version < ?

Checking your installation

You should be able to import Numba from the Python prompt:

$ python
Python 3.10.2 | packaged by conda-forge | (main, Jan 14 2022, 08:02:09) [GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import numba
>>> numba.__version__
'0.55.1'

You can also try executing the numba --sysinfo (or numba -s for short)
command to report information about your system capabilities. See :ref:`cli` for
further information.

$ numba -s
System info:
--------------------------------------------------------------------------------
__Time Stamp__
Report started (local time)                   : 2022-01-18 10:35:08.981319

__Hardware Information__
Machine                                       : x86_64
CPU Name                                      : skylake-avx512
CPU Count                                     : 12
CPU Features                                  :
64bit adx aes avx avx2 avx512bw avx512cd avx512dq avx512f avx512vl bmi bmi2
clflushopt clwb cmov cx16 cx8 f16c fma fsgsbase fxsr invpcid lzcnt mmx
movbe pclmul pku popcnt prfchw rdrnd rdseed rtm sahf sse sse2 sse3 sse4.1
sse4.2 ssse3 xsave xsavec xsaveopt xsaves

__OS Information__
Platform Name                                 : Linux-5.4.0-94-generic-x86_64-with-glibc2.31
Platform Release                              : 5.4.0-94-generic
OS Name                                       : Linux
OS Version                                    : #106-Ubuntu SMP Thu Jan 6 23:58:14 UTC 2022

__Python Information__
Python Compiler                               : GCC 9.4.0
Python Implementation                         : CPython
Python Version                                : 3.10.2
Python Locale                                 : en_GB.UTF-8

__LLVM information__
LLVM Version                                  : 11.1.0

__CUDA Information__
Found 1 CUDA devices
id 0      b'Quadro RTX 8000'                              [SUPPORTED]
                      Compute Capability: 7.5
                           PCI Device ID: 0
                              PCI Bus ID: 21
                                    UUID: GPU-e6489c45-5b68-3b03-bab7-0e7c8e809643
                                Watchdog: Enabled
             FP32/FP64 Performance Ratio: 32

(output truncated due to length)

Project description

Project details

Download files

Download the file for your platform. If you’re not sure which to choose, learn more about installing packages.

Source Distribution

Built Distributions

Close

Hashes for numba-0.56.4.tar.gz

Hashes for numba-0.56.4.tar.gz

Algorithm Hash digest
SHA256 32d9fef412c81483d7efe0ceb6cf4d3310fde8b624a9cecca00f790573ac96ee
MD5 cd918c55e5673c2ce63831d6bffd2c07
BLAKE2b-256 e21ede917b683bb5f0b6078fb1397293eab84c4eaa825fbf94d73d6488eb354f

Close

Hashes for numba-0.56.4-cp310-cp310-win_amd64.whl

Hashes for numba-0.56.4-cp310-cp310-win_amd64.whl

Algorithm Hash digest
SHA256 fbfb45e7b297749029cb28694abf437a78695a100e7c2033983d69f0ba2698d4
MD5 db7c3bfbe311899f99a80a3cd4860480
BLAKE2b-256 faa1e9dad5793d45f08401aa6983a93d53423ce4a403ae333937fa2448b263b2

Close

Hashes for numba-0.56.4-cp310-cp310-win32.whl

Hashes for numba-0.56.4-cp310-cp310-win32.whl

Algorithm Hash digest
SHA256 0611e6d3eebe4cb903f1a836ffdb2bda8d18482bcd0a0dcc56e79e2aa3fefef5
MD5 180b5f8291f059a67d3b3248ad15c457
BLAKE2b-256 a27028f2c417a3660784b0df35edea9ea9201663606c7cdcd3f81b32dae11321

Close

Hashes for numba-0.56.4-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl

Hashes for numba-0.56.4-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl

Algorithm Hash digest
SHA256 4e08e203b163ace08bad500b0c16f6092b1eb34fd1fce4feaf31a67a3a5ecf3b
MD5 5288dfe642d52b213ffb828ea212d54e
BLAKE2b-256 58a4859605be01d9979fecde5e94ed6662d9a85853f9849f396d9a84455f4846

Close

Hashes for numba-0.56.4-cp310-cp310-manylinux2014_i686.manylinux_2_17_i686.whl

Hashes for numba-0.56.4-cp310-cp310-manylinux2014_i686.manylinux_2_17_i686.whl

Algorithm Hash digest
SHA256 f4cfc3a19d1e26448032049c79fc60331b104f694cf570a9e94f4e2c9d0932bb
MD5 7c9d7eac8dcb4595b7516e5f2049cc7a
BLAKE2b-256 dcb0b722cde279d5c879c1bb7a307337b16a25068818a4ff5ee2e01fd2c605b4

Close

Hashes for numba-0.56.4-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl

Hashes for numba-0.56.4-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl

Algorithm Hash digest
SHA256 85dbaed7a05ff96492b69a8900c5ba605551afb9b27774f7f10511095451137c
MD5 786a1afc9fd0fabe7e9e5550966de760
BLAKE2b-256 288d7b7dd56751eee1745c99dd6435d06c01ba40642cf3022b1c3e88d38a9dc0

Close

Hashes for numba-0.56.4-cp310-cp310-macosx_11_0_arm64.whl

Hashes for numba-0.56.4-cp310-cp310-macosx_11_0_arm64.whl

Algorithm Hash digest
SHA256 c602d015478b7958408d788ba00a50272649c5186ea8baa6cf71d4a1c761bba1
MD5 7f6fc36c920dfb0d7216d37f7278dcf1
BLAKE2b-256 953941a11c34d56944f1bf49759f7e15d19d80508c0239ed9cd246a012374334

Close

Hashes for numba-0.56.4-cp310-cp310-macosx_10_14_x86_64.whl

Hashes for numba-0.56.4-cp310-cp310-macosx_10_14_x86_64.whl

Algorithm Hash digest
SHA256 9f62672145f8669ec08762895fe85f4cf0ead08ce3164667f2b94b2f62ab23c3
MD5 85ee574152d24d92d7b121645c1bbf49
BLAKE2b-256 1a66de416cd8364c7e5cba8da9272809676e907e7045cdcb750f6ff5fff70c29

Close

Hashes for numba-0.56.4-cp39-cp39-win_amd64.whl

Hashes for numba-0.56.4-cp39-cp39-win_amd64.whl

Algorithm Hash digest
SHA256 0da583c532cd72feefd8e551435747e0e0fbb3c0530357e6845fcc11e38d6aea
MD5 b6b8f11e2afd05e99f847a3faf4d7bc2
BLAKE2b-256 9ee8d439b8eab78745573c3d4822954d081b793f2a7e17478d3d2c93a3709e2d

Close

Hashes for numba-0.56.4-cp39-cp39-win32.whl

Hashes for numba-0.56.4-cp39-cp39-win32.whl

Algorithm Hash digest
SHA256 14dbbabf6ffcd96ee2ac827389afa59a70ffa9f089576500434c34abf9b054a4
MD5 9f8e48dfa20bd4fdf992a9ba041a5348
BLAKE2b-256 7c00ff9a3f34c7862afe80b7ee5f1b78ff21271cf48d42a337d9669316b81b8c

Close

Hashes for numba-0.56.4-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl

Hashes for numba-0.56.4-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl

Algorithm Hash digest
SHA256 0240f9026b015e336069329839208ebd70ec34ae5bfbf402e4fcc8e06197528e
MD5 4331c7331be861136b4da6ac060bdb6f
BLAKE2b-256 60145dbefc1cf3b6a4c36968e7391c341b32226c5d00757efd61fe5f3d96a32e

Close

Hashes for numba-0.56.4-cp39-cp39-manylinux2014_i686.manylinux_2_17_i686.whl

Hashes for numba-0.56.4-cp39-cp39-manylinux2014_i686.manylinux_2_17_i686.whl

Algorithm Hash digest
SHA256 03634579d10a6129181129de293dd6b5eaabee86881369d24d63f8fe352dd6cb
MD5 2c4ad5c7dc8a8dfbf1c4053c5dc16ed5
BLAKE2b-256 ce44ec8efc38c4a64d84dbc508ab56d3c9e2faeb6ddfb9aa9afc1a3754d46ea1

Close

Hashes for numba-0.56.4-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl

Hashes for numba-0.56.4-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl

Algorithm Hash digest
SHA256 a12ef323c0f2101529d455cfde7f4135eaa147bad17afe10b48634f796d96abd
MD5 1dd8d42cae47904dbbc233fb0692319b
BLAKE2b-256 aaeb2781f65d4523d7fbbbf85f0dd63b4e6dadcc441523065801c39f7908cf27

Close

Hashes for numba-0.56.4-cp39-cp39-macosx_11_0_arm64.whl

Hashes for numba-0.56.4-cp39-cp39-macosx_11_0_arm64.whl

Algorithm Hash digest
SHA256 c75e8a5f810ce80a0cfad6e74ee94f9fde9b40c81312949bf356b7304ef20740
MD5 bd1335d543693abaa25fe1845908d922
BLAKE2b-256 d6caf14d880e74a8f4581cc474e30c6c25b8d7febf3e95be7c5156c9c60daa39

Close

Hashes for numba-0.56.4-cp39-cp39-macosx_10_14_x86_64.whl

Hashes for numba-0.56.4-cp39-cp39-macosx_10_14_x86_64.whl

Algorithm Hash digest
SHA256 d0ae9270a7a5cc0ede63cd234b4ff1ce166c7a749b91dbbf45e0000c56d3eade
MD5 7d9da7ed4dcc3fc2e169e3403dc84926
BLAKE2b-256 dee8d948883e14f822a82d8113c3a074fadd5cf4cc920fcb8444ec57a5960f59

Close

Hashes for numba-0.56.4-cp38-cp38-win_amd64.whl

Hashes for numba-0.56.4-cp38-cp38-win_amd64.whl

Algorithm Hash digest
SHA256 91f021145a8081f881996818474ef737800bcc613ffb1e618a655725a0f9e246
MD5 66fd971b33a02883199289b1d605dbfa
BLAKE2b-256 226e880d8ae26f26a3ecce71922797cc09b3b8a4e5274adecd0793f9b59d50b8

Close

Hashes for numba-0.56.4-cp38-cp38-win32.whl

Hashes for numba-0.56.4-cp38-cp38-win32.whl

Algorithm Hash digest
SHA256 03fe94cd31e96185cce2fae005334a8cc712fc2ba7756e52dff8c9400718173f
MD5 cc75e0bd7a3d4d70bac0dd28f7ac0ec8
BLAKE2b-256 23e678206b38a7cb823a09d5141e8d8f16701ec76d24a1bb2b91708ca890d6f3

Close

Hashes for numba-0.56.4-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl

Hashes for numba-0.56.4-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl

Algorithm Hash digest
SHA256 e64d338b504c9394a4a34942df4627e1e6cb07396ee3b49fe7b8d6420aa5104f
MD5 013e4bb7b86c0354a87417ae0e0c01dd
BLAKE2b-256 e568f05524d613227589ecd666aaf6b27e39c9870cc1c50eb42b2ef2b4f8a65d

Close

Hashes for numba-0.56.4-cp38-cp38-manylinux2014_i686.manylinux_2_17_i686.whl

Hashes for numba-0.56.4-cp38-cp38-manylinux2014_i686.manylinux_2_17_i686.whl

Algorithm Hash digest
SHA256 720886b852a2d62619ae3900fe71f1852c62db4f287d0c275a60219e1643fc04
MD5 bc90034c4d252cd2615f364750163746
BLAKE2b-256 446bb65f2f11f2bf83d49084bbf9d080139fcfcf8b27642fd76ba6eed23c1889

Close

Hashes for numba-0.56.4-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl

Hashes for numba-0.56.4-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl

Algorithm Hash digest
SHA256 3a993349b90569518739009d8f4b523dfedd7e0049e6838c0e17435c3e70dcc4
MD5 969ff930ca47d446af7fe9a7e2b51541
BLAKE2b-256 f9050a6b011d041fb7120e48c8e41b7670e1e99d04bca578f58ba10d278929f3

Close

Hashes for numba-0.56.4-cp38-cp38-macosx_11_0_arm64.whl

Hashes for numba-0.56.4-cp38-cp38-macosx_11_0_arm64.whl

Algorithm Hash digest
SHA256 4373da9757049db7c90591e9ec55a2e97b2b36ba7ae3bf9c956a513374077470
MD5 42c2056394964d61413917aac8cb51e8
BLAKE2b-256 df06b363a48cf4893ea64de772c0de9d5200bed98f2c2d16dff886848de15f2a

Close

Hashes for numba-0.56.4-cp38-cp38-macosx_10_14_x86_64.whl

Hashes for numba-0.56.4-cp38-cp38-macosx_10_14_x86_64.whl

Algorithm Hash digest
SHA256 553da2ce74e8862e18a72a209ed3b6d2924403bdd0fb341fa891c6455545ba7c
MD5 276295e820c0b869dba9f5eca530f585
BLAKE2b-256 acae119514059a9ff6b95cda9e6d0a3540b987a939fa23077874fc0dd6f7ae45

Close

Hashes for numba-0.56.4-cp37-cp37m-win_amd64.whl

Hashes for numba-0.56.4-cp37-cp37m-win_amd64.whl

Algorithm Hash digest
SHA256 42f9e1be942b215df7e6cc9948cf9c15bb8170acc8286c063a9e57994ef82fd1
MD5 eb95f0ca81e51aa30730ed1581ed6950
BLAKE2b-256 ad5ab79eda6012461c4dea6c5c4122c7438843d617f960d2d635f044a97ab912

Close

Hashes for numba-0.56.4-cp37-cp37m-win32.whl

Hashes for numba-0.56.4-cp37-cp37m-win32.whl

Algorithm Hash digest
SHA256 fcdf84ba3ed8124eb7234adfbb8792f311991cbf8aed1cad4b1b1a7ee08380c1
MD5 f1aa34c97a879d75471aa4371eb0ca99
BLAKE2b-256 32759a2c33670e3c95530472c3f89f1f6617d68f47101f9e765c0892170b22df

Close

Hashes for numba-0.56.4-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl

Hashes for numba-0.56.4-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl

Algorithm Hash digest
SHA256 8a95ca9cc77ea4571081f6594e08bd272b66060634b8324e99cd1843020364f9
MD5 00bb926ea3faa8ec361fbfd04e2bfd4a
BLAKE2b-256 6bb5b0a0af320c43f2925c699e8613382d3669829b585717ef2d795a06187564

Close

Hashes for numba-0.56.4-cp37-cp37m-manylinux2014_i686.manylinux_2_17_i686.whl

Hashes for numba-0.56.4-cp37-cp37m-manylinux2014_i686.manylinux_2_17_i686.whl

Algorithm Hash digest
SHA256 dbcc847bac2d225265d054993a7f910fda66e73d6662fe7156452cac0325b073
MD5 3ba90242c099b6a9669235e909325fbb
BLAKE2b-256 341abd24676dd4677045f9772b0f2cc9adc7a27332c0b8c82353621f86935d6a

Close

Hashes for numba-0.56.4-cp37-cp37m-manylinux2014_aarch64.manylinux_2_17_aarch64.whl

Hashes for numba-0.56.4-cp37-cp37m-manylinux2014_aarch64.manylinux_2_17_aarch64.whl

Algorithm Hash digest
SHA256 d69ad934e13c15684e7887100a8f5f0f61d7a8e57e0fd29d9993210089a5b531
MD5 6d2b7330d9ddc72aad7d95d2b254127a
BLAKE2b-256 dbe48ab9e0cde9efe95a1c1f9ecbf91ac897aae36e1ca5667a5c54e089d2bfb2

Close

Hashes for numba-0.56.4-cp37-cp37m-macosx_10_14_x86_64.whl

Hashes for numba-0.56.4-cp37-cp37m-macosx_10_14_x86_64.whl

Algorithm Hash digest
SHA256 3cb1a07a082a61df80a468f232e452d818f5ae254b40c26390054e4e868556e0
MD5 0a86845e41d8ce4f8c35d0d0b57f2d07
BLAKE2b-256 a9282babef91a7c2f84718d8c47ecd89216913cf9e130d302208c3cfd0d17122

I am trying to install numba for python but after following the instruction from the homepage I got this error that the extension_types page can not be found.

I would very appreciate if someone knows what I am doing wrong or if I missed something that I should install.

Thank you very much in advance.

Python 2.7.2+ (default, Jul 20 2012, 22:15:08) 
Type "copyright", "credits" or "license" for more information.

IPython 0.10.2 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object'. ?object also works, ?? prints more.

In [1]: import numba
---------------------------------------------------------------------------
ImportError                               Traceback (most recent call last)

/home/mijc/Downloads/numba/<ipython console> in <module>()

/home/mijc/Downloads/numba/numba/__init__.py in <module>()
      2 # type inferer

      3 from numba.special import *
----> 4 from numba import module_type_inference
      5 
      6 import os

/home/mijc/Downloads/numba/numba/module_type_inference.py in <module>()
      6 from numba import *
      7 from numba.minivect import minitypes
----> 8 from numba import typesystem, symtab
      9 
     10 import numpy.random

/home/mijc/Downloads/numba/numba/typesystem/__init__.py in <module>()
      2 from exttypes import *
      3 from closuretypes import *
      4 from ssatypes import *
      5 from templatetypes import *
      6 from typemapper import *

/home/mijc/Downloads/numba/numba/typesystem/basetypes.py in <module>()
      6 
      7 import numba
----> 8 from numba import  extension_types, error
      9 from numba.minivect.minitypes import *
     10 from numba.minivect.minitypes import map_dtype

ImportError: cannot import name extension_types

EDIT:
I installed numba via:

git clone https://github.com/numba/numba.git
cd numba
python setup.py install

When I try to install it via pip, I get the following error:

pip install numba --upgrade
Downloading/unpacking numba
  Downloading numba-0.5.0.tar.gz (333Kb): 333Kb downloaded
  Running setup.py egg_info for package numba
    Traceback (most recent call last):
      File "<string>", line 14, in <module>
      File "/home/mijc/Downloads/numba/build/numba/setup.py", line 90, in <module>
        cython_gdb=True),
      File "/usr/local/lib/python2.7/dist-packages/Cython/Distutils/extension.py", line 108, in __init__
        **kw)
    TypeError: unbound method __init__() must be called with Extension instance as first argument (got Extension instance instead)
    Complete output from command python setup.py egg_info:
    Traceback (most recent call last):

  File "<string>", line 14, in <module>

  File "/home/mijc/Downloads/numba/build/numba/setup.py", line 90, in <module>

    cython_gdb=True),

  File "/usr/local/lib/python2.7/dist-packages/Cython/Distutils/extension.py", line 108, in __init__

    **kw)

TypeError: unbound method __init__() must be called with Extension instance as first argument (got Extension instance instead)

----------------------------------------
Command python setup.py egg_info failed with error code 1

Like this post? Please share to your friends:
  • Как установить pywin32 на windows 10
  • Как установить openvpn сервер на windows 10
  • Как установить pict на windows 10
  • Как установить ntp сервер на windows
  • Как установить pytorch на windows 10