В ос windows nt используется алгоритм планирования потоков

Работа по теме: ОС 2014 ответы + закладки. Глава: 18. Планирование и диспетчеризация потоков, моменты перепланировки.. Предмет: Операционные системы. ВУЗ: МТУСИ.

Возможные переходы между состояниями:

Поток выбран на выполнение;

Поток ожидает завершения ввода/вывода;

Ввод/вывод завершен (событие произошло);

Поток вытеснен.

Всостоянии выполнения в однопроцессорной системе может находиться не более одного потока, а в каждом из состояний ожидания и готовности – несколько потоков. Эти потоки организуются в очереди.

На протяжении существования процесса выполнение его потоков может быть многократно прервано и продолжено. Переход от одного потока к другому осуществляется в результате планирования и диспетчеризации.

Планирование включает в себя решение двух задач:

определение момента времени для смены текущего активного потока;

выбор для выполнения потока из очереди готовых потоков.

Планирование может быть динамическим (решения принимаются во время работы системы на основе анализа текущей ситуации) и статическим (решения приняты заранее, работа по расписанию). Диспетчеризация заключается в реализации найденного в результате планирования решения, то есть в переключении процессора с одного потока на другой.

Диспетчеризация сводится к следующему:

сохранение контекста текущего потока, который требуется сменить;

загрузка контекста нового потока, выбранного в результате планирования;

запуск нового потока на выполнение.

Ситуации, когда необходимо планирование:

1)Время, отведенное активной задаче на выполнение, закончилось. Планировщик переводит задачу в состояние готовности и выполняет перепланирование.

2)Активная задача выполнила системный вызов, связанный с запросом на ввод/вывод или на доступ к ресурсу, который в настоящий момент занят. Планировщик переводит задачу в состояние ожидания и выполняет перепланирование.

3)Активная задача выполнила системный вызов, связанный с освобождением ресурса. Если есть, то она переводится из состояния ожидания в состояние готовность. Проверяются приоритеты готовых к выполнению задач.

4)Завершение периферийным устройством операции ввода/вывода переводит соответствующую задачу в очередь готовых, и выполняется планирование.

5)Внутреннее прерывание сигнализирует об ошибке, которая произошла в результате выполнения активной задачи. Планировщик снимает задачу и выполняет перепланирование.

19.Алгоритм планирования, основанный на квантовании.

В основе многих вытесняющих алгоритмов планирования лежит концепция квантования. В соответствии с этой концепцией каждому потоку поочередно для выполнения предоставляется ограниченный непрерывный период процессорного времени — квант. Смена активного потока происходит, если:

поток завершился и покинул систему;

произошла ошибка;

поток перешел в состояние ожидания;

исчерпан квант процессорного времени, отведенный данному потоку.

Поток, который исчерпал свой квант, переводится в состояние готовности и ожидает, когда ему будет предоставлен новый квант процессорного времени, а на выполнение в соответствии с определенным правилом выбирается новый поток из очереди готовых.

Кванты, выделяемые потокам, могут быть одинаковыми для всех потоков или различными. Чем больше квант, тем выше вероятность того, что потоки завершатся в результате первого же цикла выполнения, и тем менее явной становится зависимость времени ожидания потоков от их времени выполнения. При достаточно большом кванте алгоритм квантования вырождается в алгоритм последовательной обработки, присущий однопрограммным системам, при котором время ожидания задачи в очереди вообще никак не зависит от ее длительности.

20.Приоритетное планирование.

Приоритетное обслуживание предполагает наличие у потоков некоторой изначально известной характеристики — приоритета, на основании которой определяется порядок их выполнения. Приоритет — это число, характеризующее степень привилегированности потока при использовании ресурсов вычислительной машины, в частности процессорного времени: чем выше приоритет, тем выше привилегии, тем меньше времени будет проводить поток в очередях. Приоритет может выражаться целым или дробным, положительным или отрицательным значением.

В большинстве операционных систем, поддерживающих потоки, приоритет потока непосредственно связан с приоритетом процесса, в рамках которого выполняется данный поток. Приоритет процесса назначается операционной системой при его создании.

Рисунок 2. Приоритеты потоков в Windows NT

Существуют две разновидности приоритетного планирования: обслуживание с относительными приоритетами и обслуживание с абсолютными приоритетами.

Вобоих случаях выбор потока на выполнение из очереди готовых осуществляется одинаково: выбирается поток, имеющий наивысший приоритет. Однако проблема определения момента смены активного потока решается по-разному. В системах с относительными приоритетами активный поток выполняется до тех пор, пока он сам не покинет процессор, перейдя в состояние ожидания (или же произойдет ошибка, или поток завершится).

Всистемах с абсолютными приоритетами выполнение активного потока прерывается кроме указанных выше причин, еще при одном условии: если в очереди готовых потоков появился поток, приоритет которого выше приоритета активного потока. В этом случае прерванный поток переходит

всостояние готовности.

Во многих операционных системах алгоритмы планирования построены с использованием как концепции квантования, так и приоритетов. Например, в основе планирования лежит квантование, но величина кванта и/или порядок выбора потока из очереди готовых определяется приоритетами потоков. Именно так реализовано планирование в системе Windows NT, в которой квантование сочетается с динамическими абсолютными приоритетами. На выполнение выбирается готовый поток с наивысшим приоритетом. Ему выделяется квант времени. Если во время выполнения в очереди готовых появляется поток с более высоким приоритетом, то он вытесняет выполняемый поток.

Вытесненный поток возвращается в очередь готовых, причем он становится впереди всех остальных потоков имеющих такой же приоритет.

21.Алгоритмы планирования ОС пакетной обработки: «первым пришел – первым обслужен», «кратчайшая задача – первая», «наименьшее оставшееся время выполнения».

В таких ОС критерием эффективности служит максимальная загрузка аппаратуры. Алгоритмы планирования:

FIFO. Процессам предоставляется доступ к процессору в том порядке, в котором они его запрашивают. Достоинства: простота реализации. Недостатки: если есть один процесс, ограниченный возможностями процессора, то они замедлят работу процесса.

Кратчайшая задача — первая. Нужно знать время выполнения задачи! Критерий — минимальное среднее оборотное время. Оборотное время — время, прошедшее от начала выполнения до получения результата.

Наименьшее оставшееся время выполнения. Это версия предыдущего алгоритма с переключениями. В соответствии с этим алгоритмом планировщик каждый раз выбирает процесс с наименьшим оставшимся временем выполнения. В этом случае также необходимо заранее знать время выполнения задач. Когда поступает новая задача, ее полное время выполнения сравнивается с оставшимся временем выполнения текущей задачи. Если время выполнения новой задачи меньше, текущий процесс приостанавливается и управление передается новой задаче. Эта схема позволяет быстро обслуживать короткие запросы.

22.Алгоритмы планирования в интерактивных ОС: циклическое, приоритетное, гарантированное, лотерейное, справедливое планирование.

Цель планирования в системах разделения времени — повышение удобства и эффективности работы пользователя. В системах разделения времени пользователям (или одному пользователю) предоставляется возможность интерактивной работы сразу с несколькими приложениями. ОС принудительно периодически приостанавливает приложения, не дожидаясь, когда они добровольно освободят процессор. Всем приложениям попеременно предоставляется квант процессорного времени, таким образом, что пользователи, запустившие программы на выполнение, получают возможность поддерживать с ними диалог.

Циклическое планирование. Самый простой алгоритм планирования и часто используемый. Каждому процессу предоставляется квант времени процессора. Когда квант заканчивается, процесс переводится планировщиком в конец очереди, а управление передается следующему за ним процессу.

Преимущества:

простота;

справедливость (как в очереди покупателей, каждому только по килограмму). Недостатки:

слишком малый квант времени (по сравнению с временем переключения контекстов) приводит к частому переключению процессов и снижению производительности;

слишком большой квант может привести к увеличению времени ответа на интерактивный запрос.

Приоритетное планирование. Каждому процессу присваивается приоритет, и управление передается процессу с самым высоким приоритетом. Обычно процессы объединяют по приоритетам в группы, и применяют приоритетное планирование среди групп, а внутри группы используют циклическое планирование.

Гарантированное планирование. ОС гарантирует существующим потокам, что они получат гарантированную справедливую часть процессорного времени. n потоков, 1/n частей процессорного времени каждому. Стс должна вести учет времени, получаемого каждым потоком, в момент

перепланировки вычисляется отношение фактически получаемого воремени к времени гарантированному. На выполнение выбирается тот поток, у которого это отношение наименьшее. Лотерейное планирование. Процессам раздаются «лотерейные билеты», дающие право доступа к ресурсам. Планировщик может выбрать любой билет случайным образом. Чем больше билетов у процесса, тем больше у него шансов захватить ресурс. Взаимодействующие процессы могут при необходимости обмениваться билетами.

Справедливое планирование. Учитывается принадлежность процессов пользователям, в отличие от других алгоритмов. Процессорное время делится между пользователями.

23.Алгоритм планирования Windows NT.

Алгоритм планирования нитей в Windows NT объединяет в себе обе базовых концепции — квантование и приоритеты. Как и во всех других алгоритмах, основанных на квантовании, каждой нити назначается квант, в течение которого она может выполняться. Нить освобождает процессор, если:

блокируется, уходя в состояние ожидания;

завершается;

исчерпан квант;

в очереди готовых появляется более приоритетная нить.

Использование динамических приоритетов, изменяющихся во времени, позволяет реализовать адаптивное планирование, при котором не дискриминируются интерактивные задачи, часто выполняющие операции ввода-вывода и недоиспользующие выделенные им кванты. Если нить полностью исчерпала свой квант, то ее приоритет понижается на некоторую величину. В то же время приоритет нитей, которые перешли в состояние ожидания, не использовав полностью выделенный им квант, повышается. Приоритет не изменяется, если нить вытеснена более приоритетной нитью. Для того, чтобы обеспечить хорошее время реакции системы, алгоритм планирования использует наряду с квантованием концепцию абсолютных приоритетов. В соответствии с этой концепцией при появлении в очереди готовых нитей такой, у которой приоритет выше, чем у выполняющейся в данный момент, происходит смена активной нити на нить с самым высоким приоритетом.

24.Алгоритм планирования Linux.

В ОС LINUX поддерживается 3 класса потоков: реального времени (обслуживаются в порядке циклической очереди), реального времени (обслуживаются по FIFO), разделения времени. 140 уровней приоритета. Чем меньше число, тем выше приоритет. Потоки реального времени: приоритет 0 – 99. 0 – наивысший. Обычный поток: 100 – 139. У каждого уровня потоков свое

значение кванта времени. Linux связывает с потоком значение nice, оно определяет статический приоритет каждого потока. По умолчанию =0, изменяется с помощью системного вызова nice (value), value от -20 до +19.

25.Планирование в ОС реального времени.

ОС реального времени предназначены для управления различными техническими объектами или технологическими процессами. В таких системах мультипрограммная смесь обычно представляет собой фиксированный набор заранее разработанных программ, а выбор программы на выполнение осуществляется по прерываниям (исходя из состояния управляемого объекта) или в соответствии с расписанием плановых работ. Критерий эффективности работы ОС реального времени – способность системы выдерживать заранее заданные интервалы времени между запуском программы и получением результата (реактивность системы).

Системы реального времени делятся на:

жесткие — несоблюдение временных ограничений приводит к катастрофическим последствиям; в таких системах время завершения выполнения каждой из критических задач должно быть гарантировано для всех возможных сценариев работы системы;

Соседние файлы в папке К экзамену

  • #
  • #
  • #
  • #

Ниже представлена не простая расшифровка доклада с семинара CLRium, а переработанная версия для книги .NET Platform Architecture. Той её части, что относится к потокам.

Потоки и планирование потоков

Что такое поток? Давайте дадим краткое определение. По своей сути поток это:

  • Средство параллельного относительно других потоков исполнения кода;
  • Имеющего общий доступ ко всем ресурсам процесса.

Очень часто часто слышишь такое мнение, что потоки в .NET — они какие-то абсолютно свои. И наши .NET потоки являются чем-то более облегчённым чем есть в Windows. Но на самом деле потоки в .NET являются самыми обычными потоками Windows (хоть Windows thread id и скрыто так, что сложно достать). И если Вас удивляет, почему я буду рассказывать не-.NET вещи в хабе .NET, скажу вам так: если нет понимания этого уровня, можно забыть о хорошем понимании того, как и почему именно так работает код. Почему мы должны ставить volatile, использовать Interlocked и SpinWait. Дальше обычного lock дело не уйдёт. И очень даже зря.

Давайте посмотрим из чего они состоят и как они рождаются. По сути поток — это средство эмуляции параллельного исполнения относительно других потоков. Почему эмуляция? Потому, что поток как бы странно и смело это ни звучало — это чисто программная вещь, которая идёт из операционной системы. А операционная система создаёт этот слой эмуляции для нас. Процессор при этом о потоках ничего не знает вообще.

Задача процессора — просто исполнять код. Поэтому с точки зрения процессора есть только один поток: последовательное исполнение команд. А задача операционной системы каким-либо образом менять поток т.о. чтобы эмулировать несколько потоков.

Поток в физическом понимании

«Но как же так?», — скажите вы, — «во многих магазинах и на различных сайтах я вижу запись «Intel Xeon 8 ядер 16 потоков». Говоря по-правде это — либо скудность в терминологии либо — чисто маркетинговый ход. На самом деле внутри одного большого процессора есть в данном случае 8 ядер и каждое ядро состоит из двух логических процессоров. Такое доступно при наличии в процессоре технологии Hyper-Threading, когда каждое ядро эмулирует поведение двух процессоров (но не потоков). Делается это для повышения производительности, да. Но по большому счёту если нет понимания, на каких потоках идут расчёты, можно получить очень не приятный сценарий, когда код выполняется со скоростью, ниже чем если бы расчёты шли на одном ядре. Именно поэтому раздача ядер идёт +=2 в случае Hyper-Threading. Т.е. пропуская парные ядра.

Технология эта — достаточно спорная: если вы работаете на двух таких псевдо-ядрах (логических процессорах, которые эмулируются технологией Hyper-Threading), которые при этом находятся на одном физическом ядре и работают с одной и той-же памятью, то вы будете постоянно попадать в ситуацию, когда второй логический процессор так же пытается обратиться к данной памяти, создавая блокировку либо попадая в блокировку, т.к. поток, находящийся на первом ядре работает с той же памятью.

Возникает блокировка совместного доступа: хоть и идёт эмуляция двух ядер, на самом-то деле оно одно. Поэтому в наихудшем сценарии эти потоки исполняются по очереди, а не параллельно.

Так если процессор ничего не знает о потоках, как же достигается параллельное исполнение потоков на каждом из его ядер? Как было сказано, поток — средство операционной системы выполнять на одном процессоре несколько задач одновременно. Достигается параллелизм очень быстрым переключением между потоками в течение очень короткого промежутка времени. Последовательно запуская на выполнение код каждого из потоков и делая это достаточно часто, операционная система достигает цели: делает их исполнение псевдопараллельным, но параллельным с точки зрения восприятия человека. Второе обоснование существования потоков — это утверждение, что программа не так часто срывается в математические расчёты. Чаще всего она взаимодействует с окружающим её миром: различным оборудованием. Это и работа с жёстким диском и вывод на экран и работа с клавиатурой и мышью. Поэтому чтобы процессор не простаивал, пока оборудование сделает то, чего хочет от него программа, поток можно на это время установить в состояние блокировки: ожидания сигнала от операционной системы, что оборудование сделало то, что от него просили. Простейший пример этого — вызов метода Console.ReadKey().

Если заглянуть в диспетчер задач Windows 10, то можно заметить, что в данный момент в вашей системе существует около 1,5 тысячи потоков. И если учесть, что квант на десктопе равен 20 мс, а ядер, например, 4, то можно сделать вывод, что каждый поток получает 20 мс работы 1 раз в 7,5 сек… Ну конечно же, нет. Просто почти все потоки чего-то ждут. То ввода пользователя, то изменения ключей реестра… В операционной системе существует очень много причин, чтобы что-либо ждать.

Так что пока одни потоки в блокировке, другие — что-то делают.

Создание потоков

Простейшая функция создания потоков в пользовательском режиме операционной системы — CreateThread. Эта функция создаёт поток в текущем процессе. Вариантов параметризации CreateThread очень много и когда мы вызываем new Thread(), то из нашего .NET кода вызывается данная функция операционной системы.

В эту функцию передаются следующие атрибуты:

1) Необязательная структура с атрибутами безопасности:

  • Дескриптор безопасности (SECURITY_ATTRIBUTES) + признак наследуемости дескриптора.

    В .NET его нет, но можно создать поток через вызов функции операционной системы;

2) Необязательный размер стека:

  • Начальный размер стека, в байтах (система округляет это значение до размера страницы памяти)

    Т.к. за нас размер стека передаёт .NET, нам это делать не нужно. Это необходимо для вызовов методов и поддержки памяти.

3) Указатель на функцию — точка входа нового потоками
4) Необязательный аргумент для передачи данных функции потока.

Из того, что мы не имеем в .NET явно — это структура безопасности с атрибутами безопасности и размер стэка. Размер стэка нас мало интересует, но атрибуты безопасности нас могут заинтересовать, т.к. сталкиваемся мы с ними впервые. Сейчас мы рассмотривать их не будем. Скажу только, что они влияют на возможность изменения информации о потоке средствами операционной системы.

Если мы создаём любым способом: из .NET или же вручную, средствами ОС, мы как итог имеем и ManageThreadId и экземпляр класса Thread.

Также у этой функции есть необязательный флаг: CREATE_SUSPENDED — поток после создания не стартует. Для .NET это поведение по умолчанию.

Помимо всего прочего существует дополнительный метод CreateRemoteThread, который создаёт поток в чужом процессе. Он часто используется для мониторинга состояния чужого процесса (например программа Snoop). Этот метод создаёт в другом процессе поток и там наш поток начинает исполнение. Приложения .NET так же могут заливать свои потоки в чужие процессы, однако тут могут возникнуть проблемы. Первая и самая главная — это отсутствие в целевом потоке .NET runtime. Это значит, что ни одного метод фреймворка там не будет: только WinAPI и то, что вы написали сами. Однако, если там .NET есть, то возникает вторая проблема (которой не было раньше). Это — версия runtime. Необходимо: понять, что там запущено (для этого необходимо импортировать не-.NET методы runtime, которые написаны на C/C++ и разобраться, с чем мы имеем дело). На основании полученной информации подгрузить необходимые версии наших .NET библиотек и каким-то образом передать им управление.

Я бы рекомендовал вам поиграться с задачкой такого рода: вжиться в код любого .NET процесса и вывести куда-либо сообщение об удаче внедрения (например, в файл лога)

Планирование потоков

Для того чтобы понимать, в каком порядке исполнять код различных потоков, необходима организация планирования тих потоков. Ведь система может иметь как одно ядро, так и несколько. Как иметь эмуляцию двух ядер на одном так и не иметь такой эмуляции. На каждом из ядер: железных или же эмулированных необходимо исполнять как один поток, так и несколько. В конце концов система может работать в режиме виртуализации: в облаке, в виртуальной машине, песочнице в рамках другой операционной системы. Поэтому мы в обязательном порядке рассмотрим планирование потоков Windows. Это — настолько важная часть материала по многопоточке, что без его понимания многопоточка не встанет на своё место в нашей голове никоим образом.

Итак, начнём. Организация планирования в операционной системе Windows является: гибридной. С одной стороны моделируются условия вытесняющей многозадачности, когда операционная система сама решает, когда и на основе каких условия вытеснить потоки. С другой стороны — кооперативной многозадачности, когда потоки сами решают, когда они всё сделали и можно переключаться на следующий (UMS планировщик). Режим вытесняющей многозадачности является приоритетным, т.к. решает, что будет исполняться на основе приоритетов. Почему так? Потому что у каждого потока есть свой приоритет и операционная система планирует к исполнению более приоритетные потоки. А вытесняющей потому, что если возникает более приоритетный поток, он вытесняет тот, который сейчас исполнялся. Однако во многих случаях это бы означало, что часть потоков никогда не доберется до исполнения. Поэтому в операционной системе есть много механик, позволяющих потокам, которым необходимо время на исполнение его получить несмотря на свой более низкий по сравнению с остальными, приоритет.

Уровни приоритета

Windows имеет 32 уровня приоритета (0-31)

  • 1 уровень (00 — 00) — это Zero Page Thread;
  • 15 уровней (01 — 15) — обычные динамические приоритеты;
  • 16 уровней (16 — 31) — реального времени.

Самый низкий приоритет имеет Zero Page Thread. Это — специальный поток операционной системы, который обнуляет страницы оперативной памяти, вычищая тем самым данные, которые там находились, но более не нужны, т.к. страница была освобождена. Необходимо это по одной простой причине: когда приложение освобождает память, оно может ненароком отдать кому-то чувствительные данные. Личные данные, пароли, что-то ещё. Поэтому как операционная система так и runtime языков программирования (а у нас — .NET CLR) обнуляют получаемые участки памяти. Если операционная система понимает, что заняться особо нечем: потоки либо стоят в блокировке в ожидании чего-либо либо нет потоков, которые исполняются, то она запускает самый низко приоритетный поток: поток обнуления памяти. Если она не доберется этим потоком до каких-либо участков, не страшно: их обнулят по требованию. Когда их запросят. Но если есть время, почему бы это не сделать заранее?

Продолжая говорить о том, что к нам не относится, стоит отметить приоритеты реального времени, которые когда-то давным-давно таковыми являлись, но быстро потеряли свой статус приоритетов реального времени и от этого статуса осталось лишь название. Другими словами, Real Time приоритеты на самом деле не являются таковыми. Они являются приоритетами с исключительно высоким значением приоритета. Т.е. если операционная система будет по какой-то причине повышать приоритет потока с приоритетом из динамической группы (об этом — позже, но, например, потому, что потоку освободили блокировку) и при этом значение до повышения было равно 15, то повысить приоритет операционная система не сможет: следующее значение равно 16, а оно — из диапазона реального времени. Туда повышать такими вот «твиками» нельзя.

Уровень приоритетов процессов с позиции Windows API.

Приоритеты — штука относительная. И чтобы нам всем было проще в них ориентироваться, были введены некие правила относительности расчетов: во-первых все потоки вообще (от всех приложений) равны для планировщика: планировщик не различает потоки это различных приложений или же одного и того же приложения. Далее, когда программист пишет свою программу, он задаёт приоритет для различных потоков, создавая тем самым модель многопоточности внутри своего приложения. Он прекрасно знает, почему там был выбран пониженный приоритет, а тут — обычный. Внутри приложения всё настроено. Далее, поскольку есть пользователь системы, он также может выстраивать приоритеты для приложений, которые запускаются на этой системе. Например, он может выбрать повышенный приоритет для какого-то расчетного сервиса, отдавая ему тем самым максимум ресурсов. Т.е. уровень приоритета можно задать и у процесса.

Однако, изменение уровня приоритета процесса не меняет относительных приоритетов внутри приложения: их значения сдвигаются, но не меняется внутренняя модель приоритетов: внутри по-прежнему будет поток с пониженным приоритетом и поток — с обычным. Так, как этого хотел разработчик приложения. Как же это работает?

Существует 6 классов приоритетов процессов. Класс приоритетов процессов — это то, относительно чего будут создаваться приоритеты потоков. Все эти классы приоритетов можно увидеть в «Диспетчере задач», при изменении приоритета какого-либо процесса.

Другими словами класс приоритета — это то, относительно чего будут задаваться приоритеты потоков внутри приложения. Чтобы задать точку отсчёта, было введено понятие базового приоритета. Базовый приоритет — это то значение, чем будет являться приоритет потока с типом приоритета Normal:

  • Если процесс создаётся с классом Normal и внутри этого процесса создаётся поток с приоритетом Normal, то его реальный приоритет Normal будет равен 8 (строка №4 в таблице);
  • Если Вы создаёте процесс и у него класс приоритета Above Normal, то базовый приоритет будет равен 10. Это значит, что потоки внутри этого процесса будут создаваться с более повышенным приоритетом: Normal будет равен 10.

Для чего это необходимо? Вы как программисты знаете модель многопоточности, которая у вас присутствует.
Потоков может быть много и вы решаете, что один поток должен быть фоновым, так как он производит вычисления и вам
не столь важно, когда данные станут доступны: важно чтобы поток завершил вычисления (например поток обхода и анализа дерева). Поэтому, вы устанавливаете пониженный приоритет данного потока. Аналогично может сложится ситуация когда необходимо запустить поток с повышенным приоритетом.

Представим, что ваше приложение запускает пользователь и он решает, что ваше приложение потребляет слишком много процессорных ресурсов. Пользователь считает, что ваше приложение не столь важное в системе, как какие-нибудь другие приложения и понижает приоритет вашего приложения до Below Normal. Это означает, что он задаёт базовый приоритет 6 относительно которого будут рассчитываться приоритеты потоков внутри вашего приложения. Но в системе общий приоритет упадёт. Как при этом меняются приоритеты потоков внутри приложения?

Таблица 3

Normal остаётся на уровне +0 относительно уровня базового приоритета процесса. Below normal — это (-1) относительно уровня базового. Т.е. в нашем примере с понижением уровня приоритета процесса до класса Below Normal приоритет потока ‘Below Normal’ пересчитается и будет не 8 - 1 = 7 (каким он был при классе Normal), а 6 - 1 = 5. Lowest (-2) станет равным 4.

Idle и Time Critical — это уровни насыщения (-15 и +15). Почему Normal — это 0 и относительно него всего два шага: -2, -1, +1 и +2? Легко провести параллель с обучением. Мы ходим в школу, получаем оценки наших знаний (5,4,3,2,1) и нам понятно, что это за оценки: 5 — молодец, 4 — хорошо, 3 — вообще не постарался, 2 — это не делал ни чего, а 1 — это то, что можно исправить потом на 4. Но если у нас вводится 10-ти бальная система оценок (или что вообще ужас — 100-бальная), то возникает неясность: что такое 9 баллов или 7? Как понять, что вам поставили 3 или 4?

Тоже самое и с приоритетами. У нас есть Normal. Дальше, относительно Normal у нас есть чуть повыше
Normal (Normal above), чуть пониже Normal (Normal below). Также есть шаг на два вверх
или на два вниз (Higest и Lowest). Нам, поверьте, нет никакой необходимости в более подробной градации. Единственное, очень редко, может раз в жизни, нам понадобится сказать: выше чем любой приоритет в системе. Тогда мы выставляем уровень Time Critical. Либо наоборот: это надо делать, когда во всей системе делать нечего. Тогда мы выставляем уровень Idle. Это значения — так называемые уровни насыщения.

Как рассчитываются уровни приоритета?

У нас бал класс приоритета процесса Normal (Таблица 3) и приоритет потоков Normal — это 8. Если процесс Above Normal то поток Normal получается равен 9. Если же процесс выставлен в Higest, то поток Normal получается равен 10.

Поскольку для планировщика потоков Windows все потоки процессов равнозначны, то:

  • Для процесса класса Normal и потока Above-Normal
  • Для процесса класса Higest и потока Normal
    конечные приоритеты будут одинаковыми и равны 10.

Если мы имеем два процесса: один с приоритетом Normal, а второй — с приоритетом Higest, но при этом
первый имел поток Higest а второй Normal, то система их приоритеты будет рассматривать как одинаковые.

Как уже обсуждалось, группа приоритетов Real-Time на самом деле не является таковой, поскольку настоящий Real-Time — это гарантированная доставка сообщения за определённое время либо обработка его получения. Т.е., другими словами, если на конкретном ядре есть такой поток, других там быть не должно. Однако это ведь не так: система может решить, что низко приоритетный поток давно не работал и дать ему время, отключив real-time. Вернее его назвать классом приоритетов который работает над обычными приоритетами и куда обычные приоритеты не могут уйти, попав под ситуации, когда Windows временно повышает им приоритет.

Но так как поток повышенным приоритетом исполняется только один на группе ядер, то получается,
что если у вас даже Real-Time потоки, не факт, что им будет выделено время.

Если перевести в графический вид, то можно заметить, что классы приоритетов пересекаются. Например, существует пересечение Above-Normal Normal Below-Normal (столбик с квадратиками):

Это значит, что для этих трех классов приоритетов процессов существуют такие приоритеты потоков внутри этих классов, что реальный приоритет будет равен. При этом, когда вы задаёте приоритет процессу вы просто повышаете или понижаете все его внутренние приоритеты потоков на определённое значение (см. Таблица 3).

Поэтому, когда процессу выдаётся более высокий класс приоритета, это повышает приоритет потоков процесса относительно обычных – с классом Normal.

Кстати говоря, мы стартовали продажи на CLRium #7, в котором мы с огромным удовольствием будем говорить про практику работы с многопоточным кодом. Будут и домашние задания и даже возможность работы с личным ментором.

Загляните к нам на сайт: мы сильно постарались, чтобы его было интересно изучить.

При разработке структуры Windows NT была в значительной степени использована концепция микроядра. В соответствии с этой идеей ОС разделена на несколько подсистем, каждая из которых выполняет отдельный набор сервисных функций — например, сервис памяти, сервис по созданию процессов, или сервис по планированию процессов. Каждый сервер выполняется в пользовательском режиме, выполняя цикл проверки запроса от клиента на одну из его сервисных функций. Клиент, которым может быть либо другая компонента ОС, либо прикладная программа, запрашивает сервис, посылая сообщение на сервер. Ядро ОС (или микроядро), работая в привилегированном режиме, доставляет сообщение нужному серверу, затем сервер выполняет операцию, после этого ядро возвращает результаты клиенту с помощью другого сообщения.

Структурно Windows NT может быть представлена в виде двух частей: часть операционной системы, работающая в режиме пользователя, и часть операционной системы, работающая в режиме ядра (рисунок 8.1).

Часть Windows NT, работающая в режиме ядра, называется executive — исполнительной частью. Она включает ряд компонент, которые управляют виртуальной памятью, объектами (ресурсами), вводом-выводом и файловой системой (включая сетевые драйверы), взаимодействием процессов и частично системой безопасности. Эти компоненты взаимодействуют между собой с помощью межмодульной связи. Каждая компонента вызывает другие с помощью набора тщательно специфицированных внутренних процедур.

Вторую часть Windows NT, работающую в режиме пользователя, составляют серверы — так называемые защищенные подсистемы. Серверы Windows NT называются защищенными подсистемами, так как каждый из них выполняется в отдельном процессе, память которого отделена от других процессов системой управления виртуальной памятью NT executive. Так как подсистемы автоматически не могут совместно использовать память, они общаются друг с другом посредством посылки сообщений. Сообщения могут передаваться как между клиентом и сервером, так и между двумя серверами. Все сообщения проходят через исполнительную часть Windows NT. Ядро Windows NT планирует нити защищенных подсистем точно так же, как и нити обычных прикладных процессов.

Рис. 8.1. Структура Windows NT

Поддержку защищенных подсистем обеспечивает исполнительная часть — Windows NT executive, которая работает в пространстве ядра и никогда не сбрасывается на диск. Ее составными частями являются:

менеджер кэша, реализующий кэширование диска.

Исполнительная часть, в свою очередь, основывается на службах нижнего уровня, предоставляемых ядром (его можно назвать и микроядром) NT. В функции ядра входит:

  • планирование процессов,
  • обработка прерываний и исключительных ситуаций,
  • синхронизация процессоров для многопроцессорных систем,
  • восстановление системы после сбоев.

Ядро работает в привилегированном режиме и никогда не удаляется из памяти. Обратиться к ядру можно только посредством прерывания. Ядро расположено над уровнем аппаратных абстракций (Hardware Abstraction Level HAL), который концентрирует в одном месте большую часть машинно-зависимых процедур. HAL располагается между NT executive и аппаратным обеспечением и скрывает от системы такие детали, как контроллеры прерываний, интерфейсы ввода/вывода и механизмы взаимодействия между процессорами. Такое решение позволяет легко переносить Windows NT с одной платформы на другую путем замены только слоя HAL.

При создании NT разработчики руководствовались задачами улучшения производительности и сетевых возможностей, а также требованием поддержки определенного набора прикладных сред. Эта цель была достигнута продуманным разделением функций между модулями ядра и остальными модулями. Например, передача данных в файловую систему и по сети производится быстрее в пространстве ядра, поэтому внутри ядра NT выделены буфера для небольших по объему (от 16 до 32 Кб) операций чтения и записи, являющихся типичными для приложений клиент-сервер и распределенных приложений. Размещение этих функций ввода-вывода внутри ядра, может, и портит академическую чистоту микроядра NT, но соответствует цели создания NT.

Защищенные подсистемы Windows NT работают в пользовательском режиме и создаются Windows NT во время загрузки операционной системы. Сразу после создания они начинают бесконечный цикл своего выполнения, отвечая на сообщения, поступающие к ним от прикладных процессов и других подсистем. Среди защищенных подсистем можно выделить подкласс, называемый подсистемами окружения. Подсистемы окружения реализуют интерфейсы приложений операционной системы (API). Другие типы подсистем, называемые интегральными подсистемами, исполняют необходимые операционной системе задачи. Например, большая часть системы безопасности Windows NT реализована в виде интегральной подсистемы, сетевые серверы также выполнены как интегральные подсистемы.

Наиболее важной подсистемой окружения является Win32 — подсистема, которая обеспечивает доступ для приложений к 32-bit Windows API. Дополнительно эта система обеспечивает графический интерфейс с пользователем и управляет вводом/выводом данных пользователя. Также поддерживаются подсистемы POSIX, OS/2,16-разрядная Windows и MS-DOS.

Каждая защищенная подсистема работает в режиме пользователя, вызывая системный сервис NT executive для выполнения привилегированных действий в режиме ядра. Сетевые серверы могут выполняться как в режиме пользователя, так и в режиме ядра, в зависимости от того, как они разработаны.

Подсистемы связываются между собой путем передачи сообщений. Когда, например, пользовательское приложение вызывает какую-нибудь API-процедуру, подсистема окружения, обеспечивающая эту процедуру, получает сообщение и выполняет ее либо обращаясь к ядру, либо посылая сообщение другой подсистеме. После завершения процедуры подсистема окружения посылает приложению сообщение, содержащее возвращаемое значение. Посылка сообщений и другая деятельность защищенных подсистем невидима для пользователя.

Основным средством, скрепляющим все подсистемы Windows NT в единое целое, является механизм вызова локальных процедур (Local Procedure Call — LPC). LPC представляет собой оптимизированный вариант более общего средства — удаленного вызова процедур (RPC), которое используется для связи клиентов и серверов, расположенных на разных машинах сети.

Средства LPC поддерживают несколько способов передачи данных между клиентами и серверами: один обычно используется для передачи коротких сообщений, другой — для длинных сообщений, а третий оптимизирован специально для использования подсистемой Win32. Каждая подсистема устанавливает порт — канал связи, посредством которого с ней могут связываться другие процессы. Порты реализуются как объекты.

Windows NT использует защищенные подсистемы для того, чтобы:

  • Обеспечить несколько программных интерфейсов (API), по возможности не усложняя при этом базовый программный код (NT executive).
  • Изолировать базовую операционную систему от изменений или расширений в поддерживаемых API.
  • Объединить часть глобальных данных, требующихся всем API, и в то же время отделить данные, использующиеся каждым отдельным API от данных, использующихся другими API.
  • Защитить окружение каждого API от приложений, а также от окружений других API, и защитить базовую операционную систему от различных окружений.
  • Позволить операционной системе расширяться в будущем за счет новых API.

Таким образом, реализация частей ОС в виде серверов, выполняющихся в режиме пользователя, является важнейшей частью проекта Windows NT и оказывает глубокое воздействие на все функционирование системы.

Микроядро NT служит, главным образом, средством поддержки для переносимой основной части ОС — набора пользовательских сред. Концентрация машинно-зависимых программ внутри микроядра делает перенос NT на разнообразные процессоры относительно легким. Но в то время, как некоторые микроядра (Mach и Chorus) предполагается поставлять в качестве самостоятельного программного продукта, из операционной системы Windows NT ядро вряд ли может быть вычленено для отдельного использования. Это является одной из причин того, что некоторые специалисты не считают Windows NT истинно микроядерной ОС в том смысле, в котором таковыми являются Mach и Chorus. Те же критики отмечают также, что NT не исключает, как это положено, все надстроенные службы из пространства ядра и что драйверы устройств в NT по минимуму взаимодействуют с ядром, предпочитая работать непосредственно с лежащим ниже слоем аппаратной абстракции HAL.

Множественные прикладные среды

При разработке NT важнейшим рыночным требованием являлось обеспечение поддержки по крайней мере двух уже существующих программных интерфейсов OS/2 и POSIX, а также возможности добавления других API в будущем.

Заметим, что для того, чтобы программа, написанная для одной ОС, могла быть выполнена в рамках другой ОС, недостаточно лишь обеспечить совместимость API. Кроме этого, необходимо обеспечить ей «родное» окружение: структуру процесса, средства управления памятью, средства обработки ошибок и исключительных ситуаций, механизмы защиты ресурсов и семантику файлового доступа. Отсюда ясно, что поддержка нескольких прикладных программных сред является очень сложной задачей, тесно связанной со структурой операционной системы. Эта задача была успешно решена в Windows NT, при этом в полной мере был использован опыт разработчиков ОС Mach из университета Карнеги-Меллона, которые смогли в своей клиент-серверной реализации UNIX’а отделить базовые механизмы операционной системы от серверов API различных ОС.

Windows NT поддерживает пять прикладных сред операционных систем: MS-DOS, 16-разрядный Windows, OS/2 1.x, POSIX и 32-разрядный Windows (Win32). Все пять прикладных сред реализованы как подсистемы окружения. Каждая работает в собственном защищенном пользовательском пространстве. Подсистема Win32 обеспечивает поддержку дисплея, клавиатуры и мыши для четырех оставшихся подсистем.

16-битовые приложения DOS и Windows работают на VDM (virtual DOS machines — виртуальные машины DOS), каждая из которых эмулирует полный 80×86 процессор с MS-DOS. В NT VDM является приложением Win32, значит, как и обычные модули прикладных сред для UNIX, приложения DOS и 16-битовой Windows расположены в слое непосредственно над подсистемой Win32.

Подсистемы OS/2 и POSIX построены по-другому. В качестве полноценных подсистем NT они могут взаимодействовать с подсистемой Win32 для получения доступа к вводу и выводу, но также могут обращаться непосредственно к исполнительной системе NT за другими средствами операционной системы. Подсистема OS/2 может выполнять многие имеющиеся приложения OS/2 символьного режима, включая OS/2 SQL Server, и поддерживает именованные каналы и NetBIOS.

Однако возможности подсистемы POSIX весьма ограничена, несмотря на непосредственный доступ ее к службам ядра. Приложения POSIX должны быть откомпилированы специально для Windows NT. NT не поддерживает двоичный код, предназначенный для других POSIX-совместимых систем, таких как UNIX. К тому же подсистема POSIX NT не поддерживает непосредственно печать, не поддерживает сетевой доступ, за исключением доступа к удаленным файловым системам, и не поддерживает многие средства Win32, например, отображение на память файлов и графику.

Рис. 8.2. Реализация множественных прикладных сред в Windows NT

На рисунке 8.2 показана структура, обеспечивающая в Windows NT поддержку множественных прикладных сред.

NT executive выполняет базовые функции операционной системы и является той основой, на которой подсистемы окружения реализуют поддержку своих приложений. Все подсистемы равноправны и могут вызвать «родные» функции NT для создания соответствующей среды для своих приложений.

Каждая подсистема окружения имеет свое представление о том, что такое, например, процесс или описатель файла, поэтому структуры данных, используемые в каждом окружении, могут не совпадать. Следовательно, как только подсистема Win32 передала прикладной процесс другой подсистеме окружения, данное приложение становится клиентом этой подсистемы вплоть до завершения процесса. При этом подсистема Win32 перенаправляет входные сообщения от пользователя этому приложению, а также отображает вывод приложения на экране.

Объектно-ориентированный подход

Хотя NT и не является полностью объектно-ориентированной, в ее основе лежат объекты. Единообразная форма именования, совместного использования и учета системных ресурсов, простой и дешевый способ обеспечения безопасности системы и ее модификации — все эти преимущества могут быть достигнуты при использовании объектной модели.

В Windows NT любой ресурс системы, который одновременно может быть использован более чем одним процессом, включая файлы, совместно используемую память и физические устройства, реализован в виде объекта и управляется рядом функций. Такой подход сокращает число изменений, которые необходимо внести в операционную систему в процессе ее эксплуатации. Если, скажем, изменилось что-то в аппаратуре, то все, что необходимо сделать — заменить соответствующий объект. Аналогично, если требуется поддержка новых ресурсов, то надо добавить только новый объект, не изменяя при этом остального кода операционной системы.

Наиболее фундаментальное отличие между объектом и обыкновенной структурой данных заключается в том, что внутренняя структура данных объекта скрыта от наблюдения. Вы должны вызвать объектную функцию для того, чтобы получить данные из объекта или поместить данные в объект. Вы не можете непосредственно изменять данные, находящиеся внутри объекта. Это отделяет средства реализации объекта от кода, который только использует его, такая техника позволяет легко изменять в последствии реализацию объектов.

Группа разработчиков NT executive решила использовать объекты для представления системных ресурсов, потому что объекты обеспечивают централизованные средства для выполнения трех важных ( и часто утомительных) задач ОС:

  • Поддержка воспринимаемых человеком имен системных ресурсов;
  • Разделение ресурсов и данных между процессами;
  • Защита ресурсов от несанкционированного доступа.

Не все структуры данных в NT executive являются объектами. Объектами сделаны только такие данные, которые нужно разделять, защищать, именовать или делать видимыми для программ пользовательского режима ( с помощью системных функций). Структуры, которые используются только одним компонентом executive для выполнения внутренних функций, не являются объектами.

Несмотря на всестороннее использование объектов для представления разделяемых ресурсов, Windows NT не является объектно-ориентированной системой в строгом смысле. Большая часть кода операционной системы написана на С с целью обеспечения переносимости. Несмотря на то, что С не поддерживает непосредственно объектно-ориенти-

рованные конструкции, такие как динамическое связывание типов данных, полиморфные функции или наследование классов, эти инструментальные средства были использованы из-за их широкой распространенности.

Менеджер объектов — это компонента NT executive, которая ответственна за создание, удаление, защиту и слежение за NT-объектами. Менеджер объектов централизует операции управления ресурсами, которые в противном случае будут разбросаны по всей ОС.

Менеджер объектов NT выполняет следующие функции:

  • Выделяет память для объекта.
  • Присоединяет к объекту так называемый дескриптор безопасности, который определяет, кому разрешено использовать объект, и что они могут с ним делать.
  • Создает и манипулирует структурой каталога объектов, в котором хранятся имена объектов.
  • Создает описатель объекта и возвращает его вызывающему процессу.

Процессы пользовательского режима, включая подсистемы окружения, должны иметь описатель объекта перед тем, как их нити смогут использовать этот объект. Использование описателей для работы с системными ресурсами не является новой идеей. Например, библиотеки С и Паскаля (а также других языков) возвращают описатели для открытых файлов. Аналогично приложения Win32 используют различные типы описателей для управления окнами, курсором мыши, иконками. В обоих случаях описатели служат косвенными указателями на системные ресурсы; эта косвенность предохраняет прикладные программы от рутинной работы непосредственно с системными структурами данных.

Каждый NT-объект является объектом определенного типа. Тип определяет данные, которые хранит объект, и «родные» системные функции, которые могут к нему применяться. Для того, чтобы управлять различными объектами единообразно, менеджер объектов требует, чтобы каждый объект содержал несколько полей стандартной информации в определенном месте объекта. До тех пор, пока эти данные имеются, менеджер объектов не заботится о том, что еще хранится в объекте. Каждый объект состоит из двух частей — заголовка объекта и тела объекта, которые содержат стандартные и переменные данные объекта соответственно. Менеджер объектов работает с заголовком объекта, а другие компоненты executive работают с телами объектов тех типов, которые они сами создают. Заголовок объекта используется менеджером без учета типа объекта. В заголовке объекта любого типа содержится имя, каталог, дескриптор безопасности, квоты на использование ресурсов, счетчик открытых описателей, база данных открытых описателей, признак постоянный/временный, режим пользователя/ядра, указатель на тип объекта.

Кроме заголовка объекта, каждый объект имеет тело объекта, формат и содержание которого уникально определяется типом этого объекта; у всех объектов одного и того же типа одинаковый формат тела. При создании объекта исполнительная часть может оперировать данными в телах всех объектов этого типа.

Процессы и нити

В разных ОС процессы реализуются по-разному. Эти различия заключаются в том, какими структурами данных представлены процессы, как они именуются, какими способами защищены друг от друга и какие отношения существуют между ними. Процессы Windows NT имеют следующие характерные свойства:

  • Процессы Windows NT реализованы в форме объектов, и доступ к ним осуществляется посредством службы объектов.
  • Процесс Windows NT имеет многонитевую организацию.
  • Как объекты-процессы, так и объекты-нити имеют встроенные средства синхронизации.
  • Менеджер процессов Windows NT не поддерживает между процессами отношений типа «родитель-потомок».

В любой системе понятие «процесс» включает следующее:

  • исполняемый код,
  • собственное адресное пространство, которое представляет собой совокупность виртуальных адресов, которые может использовать процесс,
  • ресурсы системы, такие как файлы, семафоры и т.п., которые назначены процессу операционной системой.
  • хотя бы одну выполняемую нить.

Адресное пространство каждого процесса защищено от вмешательства в него любого другого процесса. Это обеспечивается механизмами виртуальной памяти. Операционная система, конечно, тоже защищена от прикладных процессов. Чтобы выполнить какую-либо процедуру ОС или прочитать что-либо из ее области памяти, нить должна выполняться в режиме ядра. Пользовательские процессы получают доступ к функциям ядра посредством системных вызовов. В пользовательском режиме выполняются не только прикладные программы, но и защищенные подсистемы Windows NT.

В Windows NT процесс — это просто объект, создаваемый и уничтожаемый менеджером объектов. Объект-процесс, как и другие объекты, содержит заголовок, который создает и инициализирует менеджер объектов. Менеджер процессов определяет атрибуты, хранимые в теле объекта-процесса, а также обеспечивает системный сервис, который восстанавливает и изменяет эти атрибуты.

В число атрибутов тела объекта-процесса входят:

  • Идентификатор процесса — уникальное значение, которое идентифицирует процесс в рамках операционной системы.
  • Токен доступа — исполняемый объект, содержащий информацию о безопасности.
  • Базовый приоритет — основа для исполнительного приоритета нитей процесса.
  • Процессорная совместимость — набор процессоров, на которых могут выполняться нити процесса.
  • Предельные значения квот — максимальное количество страничной и нестраничной системной памяти, дискового пространства, предназначенного для выгрузки страниц, процессорного времени — которые могут быть использованы процессами пользователя.
  • Время исполнения — общее количество времени, в течение которого выполняются все нити процесса.

Напомним, что нить является выполняемой единицей, которая располагается в адресном пространстве процесса и использует ресурсы, выделенные процессу. Подобно процессу нить в Windows NT реализована в форме объекта и управляется менеджером объектов.

Объект-нить имеет следующие атрибуты тела:

  • Идентификатор клиента — уникальное значение, которое идентифицирует нить при ее обращении к серверу.
  • Контекст нити — информация, которая необходима ОС для того, чтобы продолжить выполнение прерванной нити. Контекст нити содержит текущее состояние регистров, стеков и индивидуальной области памяти, которая используется подсистемами и библиотеками.
  • Динамический приоритет — значение приоритета нити в данный момент.
  • Базовый приоритет — нижний предел динамического приоритета нити.
  • Процессорная совместимость нитей — перечень типов процессоров, на которых может выполняться нить.
  • Время выполнения нити — суммарное время выполнения нити в пользовательском режиме и в режиме ядра, накопленное за период существования нити.
  • Состояние предупреждения — флаг, который показывает, что нить должна выполнять вызов асинхронной процедуры.
  • Счетчик приостановок — текущее количество приостановок выполнения нити.

Кроме перечисленных, имеются и некоторые другие атрибуты.

Как видно из перечня, многие атрибуты объекта-нити аналогичны атрибутам объекта-процесса. Весьма сходны и сервисные функции, которые могут быть выполнены над объектами-процессами и объектами-нитями: создание, открытие, завершение, приостановка, запрос и установка информации, запрос и установка контекста и другие функции.

Алгоритм планирования процессов и нитей

В Windows NT реализована вытесняющая многозадачность, при которой операционная система не ждет, когда нить сама захочет освободить процессор, а принудительно снимает ее с выполнения после того, как та израсходовала отведенное ей время (квант), или если в очереди готовых появилась нить с более высоким приоритетом. При такой организации разделения процессора ни одна нить не займет процессор на очень долгое время.

Рис. 8.3. Граф состояний нити

В ОС Windows NT нить в ходе своего существования может иметь одно из шести состояний (рисунок 8.3). Жизненный цикл нити начинается в тот момент, когда программа создает новую нить. Запрос передается NT executive, менеджер процессов выделяет память для объекта-нити и обращается к ядру, чтобы инициализировать объект-нить ядра. После инициализации нить проходит через следующие состояния:

  • Готовность. При поиске нити на выполнение диспетчер просматривает только нити, находящиеся в состоянии готовности, у которых есть все для выполнения, но не хватает только процессора.
  • Первоочередная готовность (standby). Для каждого процессора системы выбирается одна нить, которая будет выполняться следующей (самая первая нить в очереди). Когда условия позволяют, происходит переключение на контекст этой нити.
  • Выполнение. Как только происходит переключение контекстов, нить переходит в состояние выполнения и находится в нем до тех пор, пока либо ядро не вытеснит ее из-за того, что появилась более приоритетная нить или закончился квант времени, выделенный этой нити, либо нить завершится вообще, либо она по собственной инициативе перейдет в состояние ожидания.
  • Ожидание. Нить может входить в состояние ожидания несколькими способами: нить по своей инициативе ожидает некоторый объект для того, чтобы синхронизировать свое выполнение; операционная система (например, подсистема ввода-вывода) может ожидать в интересах нити; подсистема окружения может непосредственно заставить нить приостановить себя. Когда ожидание нити подойдет к концу, она возвращается в состояние готовности.
  • Переходное состояние. Нить входит в переходное состояние, если она готова к выполнению, но ресурсы, которые ей нужны, заняты. Например, страница, содержащая стек нити, может быть выгружена из оперативной памяти на диск. При освобождении ресурсов нить переходит в состояние готовности.
  • Завершение. Когда выполнение нити закончилось, она входит в состояние завершения. Находясь в этом состоянии, нить может быть либо удалена, либо не удалена. Это зависит от алгоритма работы менеджера объектов, в соответствии с которым он и решает, когда удалять объект. Если executive имеет указатель на объект-нить, то она может быть инициализирована и использована снова.

Диспетчер ядра использует для определения порядка выполнения нитей алгоритм, основанный на приоритетах, в соответствии с которым каждой нити присваивается число — приоритет, и нити с более высоким приоритетом выполняются раньше нитей с меньшим приоритетом. В самом начале нить получает приоритет от процесса, который создает ее. В свою очередь, процесс получает приоритет в тот момент, когда его создает подсистема той или иной прикладной среды. Значение базового приоритета присваивается процессу системой по умолчанию или системным администратором. Нить наследует этот базовый приоритет и может изменить его, немного увеличив или уменьшив. На основании получившегося в результате приоритета, называемого приоритетом планирования, начинается выполнение нити. В ходе выполнения приоритет планирования может меняться.

Windows NT поддерживает 32 уровня приоритетов, разделенных на два класса — класс реального времени и класс переменных приоритетов. Нити реального времени, приоритеты которых находятся в диапазоне от 16 до 31, являются более приоритетными процессами и используются для выполнения задач, критичных ко времени.

Каждый раз, когда необходимо выбрать нить для выполнения, диспетчер прежде всего просматривает очередь готовых нитей реального времени и обращается к другим нитям, только когда очередь нитей реального времени пуста. Большинство нитей в системе попадают в класс нитей с переменными приоритетами, диапазон приоритетов которых от 0 до 15. Этот класс имеет название «переменные приоритеты» потому, что диспетчер настраивает систему, выбирая (понижая или повышая) приоритеты нитей этого класса.

Алгоритм планирования нитей в Windows NT объединяет в себе обе базовых концепции — квантование и приоритеты. Как и во всех других алгоритмах, основанных на квантовании, каждой нити назначается квант, в течение которого она может выполняться. Нить освобождает процессор, если:

  • блокируется, уходя в состояние ожидания;
  • завершается;
  • исчерпан квант;
  • в очереди готовых появляется более приоритетная нить.

Использование динамических приоритетов, изменяющихся во времени, позволяет реализовать адаптивное планирование, при котором не дискриминируются интерактивные задачи, часто выполняющие операции ввода-вывода и недоиспользующие выделенные им кванты. Если нить полностью исчерпала свой квант, то ее приоритет понижается на некоторую величину. В то же время приоритет нитей, которые перешли в состояние ожидания, не использовав полностью выделенный им квант, повышается. Приоритет не изменяется, если нить вытеснена более приоритетной нитью.

Для того, чтобы обеспечить хорошее время реакции системы, алгоритм планирования использует наряду с квантованием концепцию абсолютных приоритетов. В соответствии с этой концепцией при появлении в очереди готовых нитей такой, у которой приоритет выше, чем у выполняющейся в данный момент, происходит смена активной нити на нить с самым высоким приоритетом.

В многопроцессорных системах при диспетчеризации и планировании нитей играет роль их процессорная совместимость: после того, как ядро выбрало нить с наивысшим приоритетом, оно проверяет, какой процессор может выполнить данную нить и, если атрибут нити «процессорная совместимость» не позволяет нити выполняться ни на одном из свободных процессоров, то выбирается следующая в порядке приоритетов нить.

Сетевые средства

Средства сетевого взаимодействия Windows NT направлены на реализацию взаимодействия с существующими типами сетей, обеспечение возможности загрузки и выгрузки сетевого программного обеспечения, а также на поддержку распределенных приложений.

Windows NT с точки зрения реализации сетевых средств имеет следующие особенности:

  • Встроенность на уровне драйверов. Это свойство обеспечивает быстродействие.
  • Открытость — обуславливается легкостью динамической загрузки-выгрузки, мультиплексируемостью протоколов.
  • Наличие RPC, именованных конвейеров и почтовых ящиков для поддержки распределенных приложений .
  • Наличие дополнительных сетевых средств, позволяющих строить сети в масштабах корпорации: дополнительные средства безопасности централизованное администрирование отказоустойчивость (UPS, зеркальные диски).

Windows NT унаследовала от своих предшественников редиректор и сервер, протокол верхнего уровня SMB и транспортный протокол NetBIOS (правда, с новым «наполнением» — NetBEUI). Как и в сети MS-NET редиректор перенаправляет локальные запросы ввода-вывода на удаленный сервер, а сервер принимает и обрабатывает эти запросы.

Сначала редиректор и сервер были написаны на ассемблере и располагались над существующим системным программным обеспечением MS-DOS. Новые редиректор и сервер встроены в Windows NT, они не зависят от архитектуры аппаратных средств, на которых работает ОС. Они написаны на С и выполнены как загружаемые драйверы файловой системы, которые могут загружаться или выгружаться в любое время. Они также могут сосуществовать с редиректорами и серверами других производителей.

Реализация редиректора и сервера как драйверов файловой системы делают их частью NT executive. Следовательно, они имеют доступ к специализированным интерфейсам, которые менеджер ввода-вывода обеспечивает для драйверов. Эти интерфейсы, в свою очередь, были разработаны с учетом нужд сетевых компонент. Доступ к интерфейсам драйверов плюс возможности непосредственного вызова кэш-менеджера дают значительный вклад в повышение производительности редиректора и сервера. Многоуровневая модель драйверов менеджера ввода-вывода отражает многоуровневую модель сетевых протоколов. Так как редиректор и сервер являются драйверами, то они могут быть размещены на верхнем уровне, под которым располагаются все необходимые драйверы транспортных протоколов. Такая структура обеспечивает модульность сетевых компонент и создает эффективный путь от уровня редиректора или сервера вниз к транспортному и физическому уровням сети.

Сетевой редиректор обеспечивает средства, необходимые одному компьютеру Windows NT для доступа к файлам и принтерам другого компьютера. Так как он поддерживает SMB-протокол, то он работает с существующими серверами MS-NET и LAN Manager, обеспечивая доступ к системам MS-DOS, Windows и OS/2 из Windows NT. Механизмы безопасности обеспечивают защиту данных Windows NT, разделяемых по сети, от несанкционированного доступа.

Редиректор имеет одну основную задачу: поддержку распределенной файловой системы, которая ведет себя подобно локальной файловой системе, хотя и работает через ненадежную среду (сеть). Когда связь отказывает, редиректор ответственен за восстановление соединения, если это возможно, или же за возврат кода ошибки, чтобы приложение смогло повторить операцию.

Подобно другим драйверам файловой системы, редиректор должен поддерживать асинхронные операции ввода-вывода, если они вызываются. Когда пользовательский запрос является асинхронным, то редиректор должен вернуть управление немедленно, независимо от того, завершилась ли удаленная операция ввода-вывода или нет. При этом редиректор выполняется в контексте этой нити. Вызывающая нить должна продолжить свою работу, а редиректор должен ждать завершения запущенной операции. Есть два варианта решения этой проблемы: или редиректор сам создает новую нить, которая будет ждать, или он может передать эту работу уже готовой нити, существующей в системе. В Windows NT реализован второй вариант.

Редиректор отправляет и получает блоки SMB для выполнения своей работы. Протокол SMB является протоколом прикладного уровня, включающим сетевой уровень и уровень представления.

SMB реализует:

  • установление сессии,
  • файловый сервис,
  • сервис печати,
  • сервис сообщений.

Интерфейс, в соответствии с которым редиректор посылает блоки SMB, называется интерфейсом транспортных драйверов (transport driver interface — TDI). Редиректор вызывает функции TDI для передачи блоков SMB различным транспортным драйверам, загруженным в Windows NT. Для вызова функций TDI редиректор должен открыть канал, называемый виртуальной связью (virtual circuit), к машине назначения, а затем послать SMB-сообщение через эту виртуальную связь. Редиректор создает только одну виртуальную связь для каждого сервера, с которым соединена система Windows NT, и мультиплексирует через нее запросы к этому серверу. Транспортный уровень определяет, каким образом реализовать виртуальную связь, и пересылает данные через сеть.

Как и редиректор, сервер Windows NT на 100% совместим с существующими SMB-протоколами MS-NET и LAN Manager. Эта полная совместимость позволяет серверу обрабатывать запросы, исходящие не только от систем Windows NT, но и от других систем, работающих с программным обеспечением LAN Manager. Как и редиректор, сервер выполнен в виде драйвера файловой системы.

Может показаться странным, что сервер в соответствии с микроядерной концепцией не реализован как серверный процесс. Было бы логично ожидать, что сетевой сервер будет функционировать как защищенная подсистема — процесс, чьи нити ожидают поступления запросов по сети, выполняют их, а затем возвращают результаты по сети. Этот подход, как наиболее естественный, был тщательно рассмотрен при проектировании Windows NT, однако, учитывая опыт построения сетей VAX/VMS и опыт использования RPC, было решено выполнить сервер как драйвер файловой системы. Хотя сервер и не является драйвером в обычном смысле, и он не управляет файловой системой на самом деле, использование модели драйвера обеспечивает некоторые преимущества.

Главное из них состоит в том, что драйвер реализован в среде NT executive и может вызывать кэш-менеджер NT непосредственно, что оптимизирует передачу данных. Например, когда сервер получает запрос на чтение большого количества данных, он вызывает кэш-менеджер для определения места расположения этих данных в кэше (или для загрузки этих данных в кэш, если их там нет) и для фиксации данных в памяти. Затем сервер передает данные непосредственно из кэша в сеть, минуя доступ к диску. Аналогично, при запросе на запись данных сервер вызывает кэш-менеджер для резервирования места для поступающих данных. Затем сервер пишет данные непосредственно в кэш. Записывая данные в кэш, сервер возвращает управление клиенту гораздо быстрее; затем кэш-менеджер записывает данные на диск в фоновом режиме (используя страничные средства менеджера виртуальной памяти).

Будучи драйвером файловой системы, сервер несколько более гибок по сравнению с его реализацией в виде процесса. Например, он может регистрировать функции завершения ввода-вывода, что позволяет ему получать управление немедленно после завершения работы драйверов нижнего уровня. Хотя сервер Windows NT реализован как драйвер файловой системы, другие серверы могут быть реализованы и как драйверы, и как серверные процессы.

Асинхронные вызовы обрабатываются сервером аналогично, с использованием пула рабочих нитей.

И редиректоры, и серверы, и транспортные драйверы могут быть в любое время загружены и выгружены.

Открытая архитектура сетевых средств Windows NT обеспечивает работу своих рабочих станций (и серверов) в гетерогенных сетях не только путем предоставления возможности динамически загружать и выгружать сетевые средства, но и путем непосредственного переключения с программных сетевых средств, ориентированных на взаимодействие с одним типом сетей, на программные средства для другого типа сетей в ходе работы системы. Windows NT поддерживает переключение программных средств на трех уровнях:

  • на уровне редиректоров — каждый редиректор предназначен для своего протокола (SMP, NCP, NFS, VINES);
  • на уровне драйверов транспортных протоколов, предоставляя для них и для редиректоров стандартный интерфейс TDI;
  • на уровне драйверов сетевых адаптеров — со стандартным интерфейсом NDIS 3.0.

Для доступа к другим типам сетей в Windows NT, помимо встроенного, могут загружаться дополнительные редиректоры. Специальные компоненты Windows NT решают, какой редиректор должен быть вызван для обслуживания запроса на удаленный ввод-вывод. За последние десятилетия получили распространение различные протоколы передачи информации по сети. И хотя Windows NT поддерживает не все эти протоколы, она, по крайней мере, разрешает включать их поддержку.

После того, как сетевой запрос достигает редиректора, он должен быть передан в сеть. В традиционной системе каждый редиректор жестко связан с определенным транспортным протоколом. В Windows NT поставлена задача гибкого подключения того или иного транспортного протокола, в зависимости от типа транспорта, используемого в другой сети. Для этого во всех редиректорах нижний уровень должен быть написан в соответствии с определенными соглашениями, которые и определяют единый программный интерфейс, называемый интерфейсом транспортных драйверов (TDI).

TDI позволяет редиректорам оставаться независимым от транспорта. Таким образом, одна версия редиректора может пользоваться любым транспортным механизмом. TDI обеспечивает набор функций, которые редиректоры могут использовать для пересылки любых типов данных с помощью транспортного уровня. TDI поддерживает как связи с установлением соединения (виртуальные связи), так и связи без установления соединения (датаграммные связи). Хотя LAN Manager использует связи с установлением соединений, Novell IPX является примером сети, которая использует связь без установления соединения. Microsoft изначально обеспечивает транспорты — NetBEUI (NetBIOS Extended User Interface), TCP/IP, IPX/SPX, DECnet и AppleTalk.

Сетевые адаптеры поставляются вместе с сетевыми драйверами, которые раньше часто были рассчитаны на взаимодействие с определенным типом транспортного протокола. Так как Windows NT позволяет загружать драйверы различных транспортных протоколов, то производители сетевых адаптеров, использующие такой подход, должны были писать различные варианты одного и того же драйвера, рассчитанные на связь с разными протоколами транспортного уровня.

Чтобы помочь производителям избежать этого, Windows NT обеспечивает интерфейс и программную среду, называемые «спецификация интерфейса сетевого драйвера» (NDIS), которые экранируют сетевые драйверы от деталей различных транспортных протоколов. Самый верхний уровень драйвера сетевого адаптера должен быть написан в соответствии с рекомендациями NDIS. В этом случае пользователь может работать с сетью TCP/IP и сетью NetBEUI (или DECnet, NetWare, VINES и т.п.), используя один сетевой адаптер и один сетевой драйвер. Среда NDIS использовалась в сетях LAN Manager, но для Windows NT она была обновлена.

Через свою нижнюю границу драйвер сетевого адаптера обычно взаимодействует непосредственно с адаптером или адаптерами, которые он обслуживает. Драйвер сетевого адаптера, реализованный для среды NDIS, управляет адаптером не непосредственно, а использует для этого функции, предоставляемые NDIS (например, для запуска ввода-вывода или обработки прерываний). Таким образом, среда NDIS образует некую оболочку, которая позволяет достаточно просто переносить драйверы сетевых адаптеров из одной ОС в другую. NDIS позволяет сетевым драйверам не содержать встроенных знаний о процессоре или операционной системе, на которых он работает.

Совместимость Windows NT с NetWare

Совместимость сетевых операционных систем предполагает использование одинакового стека коммуникационных протоколов, в том числе и верхнего прикладного уровня. Протоколы верхнего уровня (NCP, SMB, NFS, FTP, telnet) включают две части — клиентскую и серверную. При взаимодействии двух компьютеров на каждой стороне могут присутствовать как обе части прикладного протокола, так и по одной его части, в зависимости от этого образуется или одна, или две пары «клиент-сервер».

Для клиентской части протокола верхнего уровня, реализованного в виде модуля операционной системы, используются разные названия — редиректор (redirector), инициатор запросов или запросчик (requester). Эти компоненты получают запросы от приложений на доступ к удаленным ресурсам, расположенным на серверах, и ведут диалог с сервером в соответствии с каким-либо протоколом прикладного уровня. Совокупность функций, которая может использовать приложение для обращения к редиректору, называется прикладным интерфейсом (API) редиректора.

Существующая версия Windows NT 3.51 имеет встроенную поддержку стека протоколов Novell, а именно протоколов IPX/SPX и клиентской части NCP. При разработке первой версии Windows NT 3.1 между Microsoft и Novell существовало соглашение о том, что редиректор, реализующий клиентскую часть протокола NCP, будет написан силами сотрудников Novell и передан Microsoft в течение 60 дней после выпуска коммерческой версии Windows NT 3.1. Однако первая версия редиректора от Novell появилась только спустя четыре месяца и обладала существенными ограничениями: не поддерживался полностью API редиректора NetWare, в частности, поддерживались только 32-х разрядные вызовы, что означало невозможность работы старых 16 разрядных приложений клиента NetWare.

Через некоторое время Microsoft разработала свою собственную версию редиректора для NetWare, проведя большую работу по освоению NCP. Этот вариант оказался гораздо лучше, однако и он имеет недостатки: в нем отсутствует поддержка входных сценариев NetWare и службы каталогов NetWare Directory Services. Отсутствие поддержки входных сценариев означает, что администратору сети будет сложно автоматизировать создание индивидуальной операционной среды NetWare для пользователей, использующих Windows NT в качестве клиентской машины серверов NetWare.

Организация, использующая NetWare, может добавить Windows NT в качестве:

  • клиентской рабочей станции,
  • файлового сервера или сервера печати наряду с NetWare,
  • файлового сервера или сервера печати вместо NetWare,
  • сервера баз данных или других приложений.

Сеть с файловыми серверами различных типов (NetWare и Windows NT) порождает сложные технические проблемы. Даже если серверы используют одинаковые транспортные протоколы, в данном случае протокол IPX (в реализации Microsoft имеющий название NWLink), клиентским рабочим станциям все равно придется загружать два разных инициатора запросов. У клиента, работающего в среде MS-DOS, для этого может просто не хватить памяти.

Для смягчения перехода от NetWare к Windows NT Server разработано несколько инструментальных программ, в том числе утилита Migration Tool, которая включена в комплект поставки Windows NT Server. Эта утилита переносит учетную информацию пользователей (имена пользователей, ограничения и права доступа) и данные с одного или нескольких файловых серверов NetWare на сервер Windows NT. Migration Tool подбирает наилучшее соответствие между возможностями NetWare и возможностями Windows NT. Однако имеется ряд существенных различий в том, как обрабатываются такие вещи, как ограничения. В NetWare подобная информация обрабатывается для каждого пользователя в отдельности, а в Windows NT она общая для целого сервера.

Компания Beame and Whiteside Software создала первый NFS сервер для Windows NT, а также продукт под названием BW-Multiconnect, который превращает сервер Windows NT в сервер NetWare. Системы Windows NT с установленным продуктом BW-Multiconnect посылают широковещательные сообщения по протоколу SAP (протокол объявления сервисов и серверов по сети — Service Advertising Protocol, с помощью которого клиенты NetWare узнают о наличии в сети серверов и о тех услугах, которые они предоставляют). BW-Multiconnect должен облегчить сосуществование и миграцию от NetWare к Windows NT. Хотя он и может работать как единственный NCP-сервер сети, он не предназначен для этой роли, так как предоставляет лишь ограниченный набор утилит под Windows и DOS, и не обрабатывает входных командных файлов NetWare. Но когда в сети есть «настоящий» файловый сервер NetWare, то пользователи могут войти в этот сервер, выполнить системный входной командный файл, а затем подсоединиться к серверу Windows NT. Этот продукт превращает в сервер NetWare как Windows NT Server, так и Windows NT Workstation.

Microsoft ведет работу над созданием своих собственных файл- и принт-серверов NetWare для Windows NT. Кроме этого, скоро должен появиться редиректор NetWare для Windows NT, поддерживающий NDS.

Рассмотренные способы организации взаимодействия сетей построены на использовании принципа мультиплексирования протоколов. Другим подходом является использование шлюза. Шлюз действует как транслятор, что позволяет получать доступ к файлам и ресурсам печати на файловом сервере NetWare, не пользуясь ничем, кроме загруженного редиректора Windows NT. Шлюз преобразовывает SMB-сообщения, посланные каким-либо Windows NT-клиентом, в NCP-сообщения, которые посылаются на серверы NetWare. В этом случае имеется экономия памяти на клиентских машинах, так как не требуется загружать дополнительные редиректоры.

Вариант шлюза подходит только для приложений, использующих для запросов к серверу NetWare только стандартный API, а при использовании специфического для NetWare API нельзя обойтись без установки дополнительного редиректора.

Если NetWare-шлюз загружен, Windows NT Server может подсоединиться к одному или нескольким файловым серверам NetWare и подключиться к любому дисковому тому, очереди на печать или каталогу. После того, как сервер подключился к ресурсам, их можно начинать использовать совместно с другими пользователями через File Manager или Print manager, как если бы они были локальными ресурсами. То есть пользователи, вошедшие в домен, на сервере которого установлен шлюз к NetWare, получают доступ к серверам NetWare.

Трансляция протоколов в шлюзе замедляет доступ к серверу NetWare по сравнению с доступом через редиректор клиента. При тестировании замедление в малозагруженном шлюзе составило от 10% до 15%.

Имя пользователя, используемое шлюзом для входа в сервер NetWare, должно входить в группу NTGateway на сервере Windows NT. Разрешение на доступ к ресурсам NetWare предоставляется пользователям сервером Windows NT точно так же, как если бы это были его локальные ресурсы.

Предыдущая глава || Оглавление || Следующая глава

Like this post? Please share to your friends:
  • В операционных системах семейства windows единицей хранения данных является
  • В операционных системах microsoft windows существуют атрибута ов файла
  • В операционной среде windows базовым является понятие тест
  • В операционной системе windows элементарная порция информации
  • В операционной системе windows файловую систему диска можно определить через